机器学习:多项式拟合分析中国温度变化与温室气体排放量的时序数据

本文主要是介绍机器学习:多项式拟合分析中国温度变化与温室气体排放量的时序数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1、前言
    • 2、定义及公式
    • 3、案例代码
      • 1、数据解析
      • 2、绘制散点图
      • 3、多项式回归、拟合
      • 4、注意事项

1、前言

​ 当分析数据时,如果我们找的不是直线或者超平面,而是一条曲线,那么就可以用多项式回归来分析和预测。

2、定义及公式

​ 多项式回归可以写成:
Y i = β 0 + β 1 X i + β 2 X i 2 + . . . + β k X i k Y_{i} = \beta_{0} +\beta_{1}X_{i}+\beta_{2}X_{i}^2+...+\beta_{k}X_{i}^k Yi=β0+β1Xi+β2Xi2+...+βkXik
​ 例如二次曲线:
Y = a X + b X 2 + c Y=aX+bX^2+c Y=aX+bX2+c

3、案例代码

1、数据解析

​ 首先有1961年至2017年我国地表温度变化和温室气体排放量的时间序列数据,前十条数据如下。

tempemissions
0.2575635838102
-0.1426075180207
0.2886510697811
-0.0286946401541
0.0767421082166
0.187942541079
-0.2868374764636
-0.4148842570279
-0.229418514950

2、绘制散点图

​ 对于该数据我们先通过绘制散点图,这可以看出该数据适用于什么模型。

import matplotlib.pyplot as plt
import xlrd
import numpy as np
# 载入数据,打开excel文件
ExcelFile = xlrd.open_workbook("sandian.xls")
sheet1 = ExcelFile.sheet_by_index(0)
x = sheet1.col_values(0)
y = sheet1.col_values(1)
# 将列表转换为matrix
x = np.matrix(x).reshape(48, 1)
y = np.matrix(y).reshape(48, 1)# 划线y
plt.title("Epidemic and Dow Jones data analysis")
plt.xlabel("new cases")
plt.ylabel("Dow Jones Volume")
plt.plot(x, y, 'b.')
plt.show()

在这里插入图片描述

​ 上述使用xlrd方式不建议使用,简单了解即可,正常我们会使用下述更为方便且稳定的pandas来读取csv文件,这会大大简洁我们的代码并减少工作量。当然结果也是一样的。

import matplotlib.pyplot as plt
import numpy as np
import pandas as pdx = pd.read_csv('china.csv')['emissions']
y = pd.read_csv('china.csv')['temp']
# 划线y
plt.title("temp and emission")
plt.xlabel("emissions change")
plt.ylabel("temp change")
plt.plot(x, y, 'b.')
plt.show()

​ 如图所示很明显,在排放量变化达到1.5(1e11)时,斜率发生了改变,因此我们可以判断这是一个多项式模型。

3、多项式回归、拟合

​ 通过散点图的趋势,我们首先选择拟合3次来防止过拟合和欠拟合。

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import r2_score
from matplotlib.font_manager import FontProperties  # 导入FontPropertiesfont = FontProperties(fname="simhei.ttf", size=14)  # 设置字体
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] =Falsex = pd.read_csv('china.csv')['emissions']
y = pd.read_csv('china.csv')['temp']# 进行多项式拟合(这里选取3次多项式拟合)
z = np.polyfit(x, y, 3) # 用3次多项式拟合# 获取拟合后的多项式
p = np.poly1d(z)
print(p)  # 在屏幕上打印拟合多项式# 计算拟合后的y值
yvals=p(x)# 计算拟合后的R方,进行检测拟合效果
r2 = r2_score(y, yvals)
print('多项式拟合R方为:', r2)# 计算拟合多项式的极值点。
peak = np.polyder(p, 1)
print(peak.r)# 画图对比分析
plot1 = plt.plot(x, y, '*', label='初始值', color='red')
plot2 = plt.plot(x, yvals, '-', label='训练值', color='blue',linewidth=2)plt.xlabel('温室气体排放量',fontsize=13, fontproperties=font)
plt.ylabel('温度变化',fontsize=13, fontproperties=font)
plt.legend(loc="best")
plt.title('中国温室气体排放量与地表温度变化的关系')
plt.show()

​ 最后结果如下图
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-go17Atvf-1681182766850)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20230411105218629.png)]

           3             2
3.002e-34 x - 1.351e-22 x + 2.284e-11 x - 0.2613
多项式拟合R方为: 0.7468687074304835
[1.50000065e+11+5.34488173e+10j 1.50000065e+11-5.34488173e+10j]

​ 我们发现,这并不符合我们的预期,因为温室气体排放量在1.5(1e11)时,散点图趋势有明显的凹陷,而使用三次拟合并不能让曲线拟合到散点上。所以我们将 z = np.polyfit(x, y, 4)中的3改为4,来进行四次拟合。
在这里插入图片描述

​ 这样就达到了我们的预期效果,并输出我们的多项式回归公式。

           4             3             2
1.702e-44 x - 6.273e-33 x + 6.634e-22 x - 9.696e-12 x + 0.03595
多项式拟合R方为: 0.7962406171380259
[1.60734484e+11 1.07514523e+11 8.24309615e+09]

​ 我们可以得到数学模型:
Y = 1.702 ∗ 1 0 − 44 X − 6.273 ∗ 1 0 − 33 X + 6.634 ∗ 1 0 − 22 X − 9.696 ∗ 1 0 − 12 X + 0.03595 Y=1.702*10^{-44}X -6.273*10^{-33}X + 6.634*10^{-22}X-9.696*10^{-12}X +0.03595 Y=1.7021044X6.2731033X+6.6341022X9.6961012X+0.03595

4、注意事项

from matplotlib.font_manager import FontProperties  # 导入FontProperties
font = FontProperties(fname="simhei.ttf", size=14)  # 设置字体
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] =False

​ 这些代码用于显示汉字标题,这需要你的本机中有一个汉字字体文件,simhei.ttf或其他字体文件。

​ 如果需要引入,在第二行中指定文件路径。

这篇关于机器学习:多项式拟合分析中国温度变化与温室气体排放量的时序数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/505479

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重