深度学习(生成式模型)——ADM:Diffusion Models Beat GANs on Image Synthesis

本文主要是介绍深度学习(生成式模型)——ADM:Diffusion Models Beat GANs on Image Synthesis,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 基础模型结构
    • UNet结构
    • Timestep Embedding
      • 关于为什么需要timestep embedding
    • global attention layer
  • 如何提升diffusion model生成图像的质量
  • Classifier guidance
  • 实验结果

前言

在前几篇博文中,我们已经介绍了DDPM、DDIM、Classifier guidance等相关的扩散模型基础,从本节博客开始,将介绍一些经典偏应用类的文章。

《Diffusion Models Beat GANs on Image Synthesis》是openAI在2020年发表的一篇文章。文章从模型结构入手,通过扩大模型容量,在图像生成任务上击败了当时的SOTA Big GAN。

此外还提出了Classifier guidance,用于控制扩散模型生成指定类型的图像,具体推导流程可以查阅前文。

本节博客将重点总结模型结构,相应的代码可在此处查阅。

基础模型结构

Unet结构+timestep embedding+global attention layer是扩散模型常用的backbone。本节将对上述三个结构做个简单介绍。

UNet结构

UNet结构由encoder和decoder两个神经网络组成。如下图所示,encoder对图像进行downsample,deocder对图像进行upsample,encoder和decoder之间存在skip connection。encoder和decoder均由residual layers堆叠而成。
在这里插入图片描述

Timestep Embedding

在扩散模型中,通常需要进行 T T T次迭代。类似于位置编码,扩散模型的每次迭代都有一个timestep embedding,用于告知模型目前是第几次迭代,其形式通常为一个常数vector,不同迭代次数的timestep embedding通常不桶。添加timestep embedding的方式有很多,可以通过concat的方式嵌入到每一个residual layers中,也可以通过add的方式嵌入到每一个residual layers的输出中。

如下代码所示,在ADM中,timestep embedding在经过一层learning层处理后,通过add的方式嵌入到每个residual layers中。
在这里插入图片描述

关于为什么需要timestep embedding

扩散模型每轮迭代的输入图像所属的输入分布类型是不一致的,针对不同的输入分布,扩散模型的输出分布也会不同。但是模型要意识到当前图像处于哪种输入分布是件很难的事情,当两个输入分布近似时,模型的输出可能也会近似,这将很大程度影响生成图像的质量。例如生成一双手,在迭代初期,模型的输出应该是手指的轮廓等粗粒度信息,而迭代后期,模型的输出应该是手指指甲的光泽度的细粒度信息,如果迭代前后期的输入分布近似,那么在迭代的后期模型将无法输出指甲光泽度等细粒度的信息,生成的图像将不够逼真。

而timestep embedding的引入相当于把不同步骤的输入分布做了个区分。模型在学习的过程中,这种强烈的信号是不会被忽视的,输出分布的形式大概率会与timestep embedding强烈关联。当timestep取值较小时,模型输出的将是一些粗粒度信息,而随着timestep的取值逐渐变大,模型的输出也会逐渐变细。

global attention layer

global attention layer在ADM中其实就是self attention。假设第N层有 T T T个大小为 H ∗ C H*C HCfeature map,将一个feature map看成一个token,则对应的矩阵大小为 ( H ∗ C ) ∗ T (H*C)*T (HC)T,在该矩阵上使用self attention,具体的代码如下:
在这里插入图片描述

如何提升diffusion model生成图像的质量

在上一节中,我们已经总结了ADM的基础模型结构,在本节中,我们将总结论文中提到能有效提升diffusion model生成图像质量的方法。

论文在五个方面进行了消融实验
在这里插入图片描述
在128*128分辨率的imagenet图像上训练,batch size设置为256,采样时的迭代轮数为250,对应的结果如下:
在这里插入图片描述
可以看到单独加深网络、或添加更多的self attention head、或在更多层使用self attention、或使用big gan的残差模块都可以提升diffusion model生成图像的质量。

此外,作者探究了local attention和global attention对性能提升的影响。不论是local attention还是global attention,都是使用self attention作为注意力策略,但是进行注意力计算的feature map的个数不同。例如某一层共有256个特征图,特征图分辨率为4*4=16,将一个特征图看成一个token,则该层的特征图可转换为16*256大小的矩阵,global attention将在16*256大小的矩阵上进行self attention计算,而local attention则可将16*256大小的矩阵划分为4个4*256大小的矩阵,接着分别在4*256大小的矩阵上进行self attention操作。

作者探究了单独添加更多的global attention head,或者使用local attention head对生成图像质量的影响,最终发现两者均可以提升生成图像的质量,结果如下:
在这里插入图片描述

Classifier guidance

Classifier guidance用于控制扩散模型生成指定类型的图像,具体推导流程可以查阅前文

实验结果

ADM模型最终采取的配置为

For the rest of the architecture, we use 128 base channels, 2 residual blocks per resolution, multi-resolution attention, and BigGAN up/downsampling, and we train the models for 700K iterations.We opt to use 64 channels per head as our default.

实验结果
在这里插入图片描述

这篇关于深度学习(生成式模型)——ADM:Diffusion Models Beat GANs on Image Synthesis的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497646

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘