深度学习(生成式模型)——ADM:Diffusion Models Beat GANs on Image Synthesis

本文主要是介绍深度学习(生成式模型)——ADM:Diffusion Models Beat GANs on Image Synthesis,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 基础模型结构
    • UNet结构
    • Timestep Embedding
      • 关于为什么需要timestep embedding
    • global attention layer
  • 如何提升diffusion model生成图像的质量
  • Classifier guidance
  • 实验结果

前言

在前几篇博文中,我们已经介绍了DDPM、DDIM、Classifier guidance等相关的扩散模型基础,从本节博客开始,将介绍一些经典偏应用类的文章。

《Diffusion Models Beat GANs on Image Synthesis》是openAI在2020年发表的一篇文章。文章从模型结构入手,通过扩大模型容量,在图像生成任务上击败了当时的SOTA Big GAN。

此外还提出了Classifier guidance,用于控制扩散模型生成指定类型的图像,具体推导流程可以查阅前文。

本节博客将重点总结模型结构,相应的代码可在此处查阅。

基础模型结构

Unet结构+timestep embedding+global attention layer是扩散模型常用的backbone。本节将对上述三个结构做个简单介绍。

UNet结构

UNet结构由encoder和decoder两个神经网络组成。如下图所示,encoder对图像进行downsample,deocder对图像进行upsample,encoder和decoder之间存在skip connection。encoder和decoder均由residual layers堆叠而成。
在这里插入图片描述

Timestep Embedding

在扩散模型中,通常需要进行 T T T次迭代。类似于位置编码,扩散模型的每次迭代都有一个timestep embedding,用于告知模型目前是第几次迭代,其形式通常为一个常数vector,不同迭代次数的timestep embedding通常不桶。添加timestep embedding的方式有很多,可以通过concat的方式嵌入到每一个residual layers中,也可以通过add的方式嵌入到每一个residual layers的输出中。

如下代码所示,在ADM中,timestep embedding在经过一层learning层处理后,通过add的方式嵌入到每个residual layers中。
在这里插入图片描述

关于为什么需要timestep embedding

扩散模型每轮迭代的输入图像所属的输入分布类型是不一致的,针对不同的输入分布,扩散模型的输出分布也会不同。但是模型要意识到当前图像处于哪种输入分布是件很难的事情,当两个输入分布近似时,模型的输出可能也会近似,这将很大程度影响生成图像的质量。例如生成一双手,在迭代初期,模型的输出应该是手指的轮廓等粗粒度信息,而迭代后期,模型的输出应该是手指指甲的光泽度的细粒度信息,如果迭代前后期的输入分布近似,那么在迭代的后期模型将无法输出指甲光泽度等细粒度的信息,生成的图像将不够逼真。

而timestep embedding的引入相当于把不同步骤的输入分布做了个区分。模型在学习的过程中,这种强烈的信号是不会被忽视的,输出分布的形式大概率会与timestep embedding强烈关联。当timestep取值较小时,模型输出的将是一些粗粒度信息,而随着timestep的取值逐渐变大,模型的输出也会逐渐变细。

global attention layer

global attention layer在ADM中其实就是self attention。假设第N层有 T T T个大小为 H ∗ C H*C HCfeature map,将一个feature map看成一个token,则对应的矩阵大小为 ( H ∗ C ) ∗ T (H*C)*T (HC)T,在该矩阵上使用self attention,具体的代码如下:
在这里插入图片描述

如何提升diffusion model生成图像的质量

在上一节中,我们已经总结了ADM的基础模型结构,在本节中,我们将总结论文中提到能有效提升diffusion model生成图像质量的方法。

论文在五个方面进行了消融实验
在这里插入图片描述
在128*128分辨率的imagenet图像上训练,batch size设置为256,采样时的迭代轮数为250,对应的结果如下:
在这里插入图片描述
可以看到单独加深网络、或添加更多的self attention head、或在更多层使用self attention、或使用big gan的残差模块都可以提升diffusion model生成图像的质量。

此外,作者探究了local attention和global attention对性能提升的影响。不论是local attention还是global attention,都是使用self attention作为注意力策略,但是进行注意力计算的feature map的个数不同。例如某一层共有256个特征图,特征图分辨率为4*4=16,将一个特征图看成一个token,则该层的特征图可转换为16*256大小的矩阵,global attention将在16*256大小的矩阵上进行self attention计算,而local attention则可将16*256大小的矩阵划分为4个4*256大小的矩阵,接着分别在4*256大小的矩阵上进行self attention操作。

作者探究了单独添加更多的global attention head,或者使用local attention head对生成图像质量的影响,最终发现两者均可以提升生成图像的质量,结果如下:
在这里插入图片描述

Classifier guidance

Classifier guidance用于控制扩散模型生成指定类型的图像,具体推导流程可以查阅前文

实验结果

ADM模型最终采取的配置为

For the rest of the architecture, we use 128 base channels, 2 residual blocks per resolution, multi-resolution attention, and BigGAN up/downsampling, and we train the models for 700K iterations.We opt to use 64 channels per head as our default.

实验结果
在这里插入图片描述

这篇关于深度学习(生成式模型)——ADM:Diffusion Models Beat GANs on Image Synthesis的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497646

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot