OpenCV图像特征提取学习二,Shi-Tomasi 角点检测算法

2023-12-12 04:50

本文主要是介绍OpenCV图像特征提取学习二,Shi-Tomasi 角点检测算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.Shi-Tomasi 角点检测算法

Harris角点检测基本数学公式如下: 

                            E\left ( u,v \right ) = \sum_{x,y}^{}w\left ( x,y \right )\left [ I\left ( x+u,y+v \right )-I\left ( x,y \right ) \right ]^{2}

泰勒公式进行展开后,近似为:

                            E \approx \left [ u,v \right ]\sum w\left ( u,v \right )\left [ \binom{I_{x}^{2},I_{x}I_{y}}{I_{x}I_{y},I_{y}^{2}} \right ]\binom{u}{v}

对于局部微小的移动量\left [ u,v \right ],可以近似得到下面的表达:

                             E \approx \left [ u,v \right ]M\begin{bmatrix} u\\ v\end{bmatrix}

其中M为2*2的矩阵,可由图像的导数求得:

                             M = \sum_{x,y}^{}w\left ( u,v \right )\begin{bmatrix} I_{x}^{2}&I_{x}I_{y}\\ I_{x}I_{y}&I_{y}^{2}\end{bmatrix}

矩阵M,将其对角化之后 ,特征值λ1, λ2 分别代表了X 和Y 方向的灰度变化率.

                             M = \sum_{x,y}^{}w\left ( u,v \right )\begin{bmatrix} I_{x}^{2}&I_{x}I_{y}\\ I_{x}I_{y}&I_{y}^{2}\end{bmatrix} = \begin{bmatrix} \lambda _{1}&0\\ 0&\lambda _{2}\end{bmatrix}

E\left ( u,v \right )的椭圆形式如下:

                              

Harris角点检测算法的角点响应函数为:

                                 R = \lambda _{1}\lambda _{2}-K\left ( \lambda _{1}+\lambda _{2} \right )^{2}

Harris角点检测算法就是对角点响应函数R进行阈值处理:R > threshold,即提取R的局部极大值。shi-Tomasi 算法是基于Harris 算法进行的改进,Harris算法最基础的数学定义是将矩阵 M 的行列式值与矩阵 M 的迹相减,再将差值与预先给定的阈值进行比较。若两个特征值中较小的一个大于最小阈值,则会得到强角点,这就是Shi-Tomasi角点检测算法。

Shi-Tomasi角点检测算法的角点响应函数为:

                                 R =min \left ( \lambda _{1},\lambda _{2} \right )

Shi-tomasi角点检测 和Harris 算法一样,如果该分数大于设定的阈值,我们就认为它是一个角点。可以看出来只有当 λ1 和 λ 2 都大于最小值时,才被认为是角点,即下图中的紫色区域。

--------------------------------------------------------------------------------------------------------------------------------

二.Shi-Tomasi角点检测API函数接口

void goodFeaturesToTrack
(            InputArray image, OutputArray corners,int maxCorners, double qualityLevel, double minDistance,InputArray mask=noArray(), int blockSize=3,bool useHarrisDetector=false, double k=0.04 );

参数说明:

第一个参数image:输入图像,8位或浮点32比特,单通道图像;
第二个参数corners:输出参数,检测到的角点;表示返回角点的数目,如果检测出来角点数目大于最大数目则返回响应值最强前规定数目;
第三个参数corner_count:输出参数,检测到的角点数目;
第四个参数quality_level:最大最小特征值的乘法因子。定义可接受图像角点的最小质量因子;
第五个参数min_distance:限制因子。得到的角点的最小距离;使用 Euclidian 距离;
第六个参数mask:ROI感兴趣区域。函数在ROI中计算角点;如果 mask 为 NULL,则选择整个图像;
第七个参数block_size: 是计算导数的自相关矩阵时指定点的领域,采用小窗口计算的结果比单点 (也就是block_size为1)计算的结果要好;
第八个参数useHarrisDetector:当use_harris的值为非0,则函数使用Harris的角点定义;若为 0,则使用Shi-Tomasi的定义;
第九个参数K:用于设置Hessian自相关矩阵即对Hessian行列式的相对权重的权重系数;

---------------------------------------------------------------------------------------------------------------------------------

代码实现

#include"stdafx.h"
#include <opencv2/opencv.hpp>
#include <iostream>#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>using namespace cv;
using namespace std;#define WIN_NAME "Shi-Tomasi角点检测"Mat srcImage, grayImage;
int maxCornerNumber = 33;
int maxTrackbarNumber = 500;
RNG rng(12345);void on_GoodFeatureToTrack(int, void *)
{if (maxCornerNumber <= 1){maxCornerNumber = 1;}//Shi-Tomasi参数准备vector<Point2f> corners;double qualityLevel = 0.01; //角点检测可以接受的最小特征值double minDistance = 10; //角点间的最小像素距离设置int blockSize = 3;  //计算导数自相关矩阵时指定的领域范围double k = 0.04;   //权重系数Mat copy = srcImage.clone(); //复制原图到一个临时变量中,作为感兴趣区域//Shi-Tomasi TestgoodFeaturesToTrack(grayImage, corners, maxCornerNumber, qualityLevel, minDistance, Mat(), blockSize, false, k);//输出文字信息cout << ">此次检测到的角点数量为: " << corners.size() << endl;//绘制检测到的角点for (unsigned int i = 0; i < corners.size(); i++){circle(copy, corners[i], 5, Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)), -1, 8, 0);}imshow(WIN_NAME, copy);
}int main(int argc, char** argv)
{srcImage = imread("F:/photo/lj.jpg");cvtColor(srcImage, grayImage, COLOR_BGR2GRAY);namedWindow(WIN_NAME, WINDOW_AUTOSIZE);createTrackbar("最大角点数:", WIN_NAME, &maxCornerNumber, maxTrackbarNumber, on_GoodFeatureToTrack);//imshow(WIN_NAME, srcImage);on_GoodFeatureToTrack(0, 0);waitKey(0);return 0;
}

-------------------------------------------------------------------------------------------------------------------------------- 

图像处理效果

这篇关于OpenCV图像特征提取学习二,Shi-Tomasi 角点检测算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483292

相关文章

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形