OpenCV图像特征提取学习二,Shi-Tomasi 角点检测算法

2023-12-12 04:50

本文主要是介绍OpenCV图像特征提取学习二,Shi-Tomasi 角点检测算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.Shi-Tomasi 角点检测算法

Harris角点检测基本数学公式如下: 

                            E\left ( u,v \right ) = \sum_{x,y}^{}w\left ( x,y \right )\left [ I\left ( x+u,y+v \right )-I\left ( x,y \right ) \right ]^{2}

泰勒公式进行展开后,近似为:

                            E \approx \left [ u,v \right ]\sum w\left ( u,v \right )\left [ \binom{I_{x}^{2},I_{x}I_{y}}{I_{x}I_{y},I_{y}^{2}} \right ]\binom{u}{v}

对于局部微小的移动量\left [ u,v \right ],可以近似得到下面的表达:

                             E \approx \left [ u,v \right ]M\begin{bmatrix} u\\ v\end{bmatrix}

其中M为2*2的矩阵,可由图像的导数求得:

                             M = \sum_{x,y}^{}w\left ( u,v \right )\begin{bmatrix} I_{x}^{2}&I_{x}I_{y}\\ I_{x}I_{y}&I_{y}^{2}\end{bmatrix}

矩阵M,将其对角化之后 ,特征值λ1, λ2 分别代表了X 和Y 方向的灰度变化率.

                             M = \sum_{x,y}^{}w\left ( u,v \right )\begin{bmatrix} I_{x}^{2}&I_{x}I_{y}\\ I_{x}I_{y}&I_{y}^{2}\end{bmatrix} = \begin{bmatrix} \lambda _{1}&0\\ 0&\lambda _{2}\end{bmatrix}

E\left ( u,v \right )的椭圆形式如下:

                              

Harris角点检测算法的角点响应函数为:

                                 R = \lambda _{1}\lambda _{2}-K\left ( \lambda _{1}+\lambda _{2} \right )^{2}

Harris角点检测算法就是对角点响应函数R进行阈值处理:R > threshold,即提取R的局部极大值。shi-Tomasi 算法是基于Harris 算法进行的改进,Harris算法最基础的数学定义是将矩阵 M 的行列式值与矩阵 M 的迹相减,再将差值与预先给定的阈值进行比较。若两个特征值中较小的一个大于最小阈值,则会得到强角点,这就是Shi-Tomasi角点检测算法。

Shi-Tomasi角点检测算法的角点响应函数为:

                                 R =min \left ( \lambda _{1},\lambda _{2} \right )

Shi-tomasi角点检测 和Harris 算法一样,如果该分数大于设定的阈值,我们就认为它是一个角点。可以看出来只有当 λ1 和 λ 2 都大于最小值时,才被认为是角点,即下图中的紫色区域。

--------------------------------------------------------------------------------------------------------------------------------

二.Shi-Tomasi角点检测API函数接口

void goodFeaturesToTrack
(            InputArray image, OutputArray corners,int maxCorners, double qualityLevel, double minDistance,InputArray mask=noArray(), int blockSize=3,bool useHarrisDetector=false, double k=0.04 );

参数说明:

第一个参数image:输入图像,8位或浮点32比特,单通道图像;
第二个参数corners:输出参数,检测到的角点;表示返回角点的数目,如果检测出来角点数目大于最大数目则返回响应值最强前规定数目;
第三个参数corner_count:输出参数,检测到的角点数目;
第四个参数quality_level:最大最小特征值的乘法因子。定义可接受图像角点的最小质量因子;
第五个参数min_distance:限制因子。得到的角点的最小距离;使用 Euclidian 距离;
第六个参数mask:ROI感兴趣区域。函数在ROI中计算角点;如果 mask 为 NULL,则选择整个图像;
第七个参数block_size: 是计算导数的自相关矩阵时指定点的领域,采用小窗口计算的结果比单点 (也就是block_size为1)计算的结果要好;
第八个参数useHarrisDetector:当use_harris的值为非0,则函数使用Harris的角点定义;若为 0,则使用Shi-Tomasi的定义;
第九个参数K:用于设置Hessian自相关矩阵即对Hessian行列式的相对权重的权重系数;

---------------------------------------------------------------------------------------------------------------------------------

代码实现

#include"stdafx.h"
#include <opencv2/opencv.hpp>
#include <iostream>#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>using namespace cv;
using namespace std;#define WIN_NAME "Shi-Tomasi角点检测"Mat srcImage, grayImage;
int maxCornerNumber = 33;
int maxTrackbarNumber = 500;
RNG rng(12345);void on_GoodFeatureToTrack(int, void *)
{if (maxCornerNumber <= 1){maxCornerNumber = 1;}//Shi-Tomasi参数准备vector<Point2f> corners;double qualityLevel = 0.01; //角点检测可以接受的最小特征值double minDistance = 10; //角点间的最小像素距离设置int blockSize = 3;  //计算导数自相关矩阵时指定的领域范围double k = 0.04;   //权重系数Mat copy = srcImage.clone(); //复制原图到一个临时变量中,作为感兴趣区域//Shi-Tomasi TestgoodFeaturesToTrack(grayImage, corners, maxCornerNumber, qualityLevel, minDistance, Mat(), blockSize, false, k);//输出文字信息cout << ">此次检测到的角点数量为: " << corners.size() << endl;//绘制检测到的角点for (unsigned int i = 0; i < corners.size(); i++){circle(copy, corners[i], 5, Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)), -1, 8, 0);}imshow(WIN_NAME, copy);
}int main(int argc, char** argv)
{srcImage = imread("F:/photo/lj.jpg");cvtColor(srcImage, grayImage, COLOR_BGR2GRAY);namedWindow(WIN_NAME, WINDOW_AUTOSIZE);createTrackbar("最大角点数:", WIN_NAME, &maxCornerNumber, maxTrackbarNumber, on_GoodFeatureToTrack);//imshow(WIN_NAME, srcImage);on_GoodFeatureToTrack(0, 0);waitKey(0);return 0;
}

-------------------------------------------------------------------------------------------------------------------------------- 

图像处理效果

这篇关于OpenCV图像特征提取学习二,Shi-Tomasi 角点检测算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483292

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06