python气象数据处理--按照时间序列计算格点数据指标

2023-12-08 15:10

本文主要是介绍python气象数据处理--按照时间序列计算格点数据指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python气象数据处理–按照时间序列计算格点数据指标


聚合分类分析

  • python气象数据处理--按照时间序列计算格点数据指标
  • 前言
  • 一、以hourly数据为例
  • 二、使用步骤
    • 1.引入库并读取数据
    • 2.处理指标
  • 总结


前言

气象数据常常以netcdf的形式存储,通常以hourly、daily、monthly、yearly等时间精度存储,但是我们常常需要处理成月、年、季节、气候态等数据。因此需要对其进行时间维度上的计算,常常运用xarray或者pandas进行计算。


一、以hourly数据为例

我们从ERA5官网下载的hourly气温数据,将其处理成不同的指标数据。如(日循环、月循环、年循环、月、季节气候态平均等指标)

二、使用步骤

1.引入库并读取数据

代码如下(示例):

import warnings
warnings.filterwarnings("ignore")
import numpy as np
import netCDF4 as nc
import pandas as pd
import xarray as xr
#读取变量、时间、经度和纬度信息
path0='E:/csdn_test/data/ERA5_hourly/t2m/'
mf=xr.open_mfdataset(path0+'/*.nc')
print(mf)
t2m=mf['t2m']
lon=t2m.longitude
lat=t2m.latitude

mf和t2m

2.处理指标

1)分组聚合(a.groupby())
会自动跳过缺测,如果有缺测值要进行处理
以上数据集的维度坐标time为日期时间型对象,通过其dt属性可以按照日期时间进行分组。

代码如下(示例):

#按照日、月、年、季节循环输出,但是groupby会自动跳过缺测值
t2m_hour=t2m.groupby(t2m.time.dt.hour).mean()# sum, std, min, max
t2m_month=t2m.groupby(t2m.time.dt.month).mean()
t2m_year=t2m.groupby(t2m.time.dt.year).mean()
t2m_season=t2m.groupby(t2m.time.dt.season).mean()
print(t2m_season)
#按照春夏秋冬顺序求季节平均
def month_to_season(month):return (month - 3) % 12 // 3 + 1
t2m_ss=t2m.groupby(month_to_season(t2m.time.dt.month)).mean() 
print(t2m_ss)
t2m_std=t2m.groupby(t2m.time.dt.year).std()
t2m_year_min=t2m.groupby(t2m.time.dt.year).min()

分组
季节分组不是按照春、夏、秋、冬分布的,因此可以对算法进行优化
春夏秋冬
2)利用resample重采样计算resample
时间频率如下
时间频率
时间频率
时间频率

代码如下(示例):

#resample
#按日、月、季节、年平均统计(降采样)
t2mD=t2m.resample(time='D').mean()# sum, std, min, max
t2mM=t2m.resample(time='M').mean()
t2mY=t2m.resample(time='Y').mean()
t2mS=t2m.loc['1992-03':'2021-12'].resample(time='3M').mean()
t2mS1=t2m.resample(time="QS-DEC").mean()
#如果含有缺测值
t2mS1=(t2m.notnull()).resample(time="QS-DEC").mean()
#同理groupby也可以使用
t2m_year_min=(t2m.notnull()).groupby(t2m.time.dt.year).min()

resample
3)特定变量维度

代码如下(示例):

#选择特定时间、经纬度
#t = np.array(t2m.time.dt.month.isin([12,1,2]).loc['1979-12-01':'2020-03-01',850,50:30,110:130]).mean((1,2)).reshape(41,3).mean((1))
#提取季节数据和月数据等,以提取冬季数据为例
t2m_winter1=t2m.loc[t2m.time.dt.month.isin([12,1,2])].loc['1992-12-01':'2021-03-01']
t2m_winter2=t2m.loc[t2m.time.dt.season.isin(['DJF'])]
t2m1=t2m.loc[t2m.time.dt.month.isin([12,1,2])].loc['1992-01-01':'1993-12-31',50:30,110:130]
t2m1.mean(dim=['latitude', 'longitude'])

总结

使用groupby和使用Pandas的resample函数都可以实现类似的分组聚合,但是各有区别。
groupby实现的是日、月、季节、年,是按照同一时次、同一月、同一季节、同一年进行聚合,维对应[24,x,x]、[12,x,x]、[4,x,x]、[30,x,x],以日循环为例,同一个时次的月、年都求了平均
resample对应的月[360,x,x],则是不同年份求出的月平均
可以根据不同的需求选择不同的计算方式

参考链接:
xarray实例大全
相关分析和回归分析

这篇关于python气象数据处理--按照时间序列计算格点数据指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/470325

相关文章

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python重命名文件并移动到对应文件夹

《Python重命名文件并移动到对应文件夹》在日常的文件管理和处理过程中,我们可能会遇到需要将文件整理到不同文件夹中的需求,下面我们就来看看如何使用Python实现重命名文件并移动到对应文件夹吧... 目录检查并删除空文件夹1. 基本需求2. 实现代码解析3. 代码解释4. 代码执行结果5. 总结方法补充在