LLM推理部署(五):AirLLM使用4G显存即可在70B大模型上进行推理

2023-12-04 06:36

本文主要是介绍LLM推理部署(五):AirLLM使用4G显存即可在70B大模型上进行推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       众所周知,大模型的训练和推理需要大量的GPU资源,70B参数的大模型需要130G的GPU显存来存储,需要两个A100(显存为100G)。

​      在推理过程中,整个输入序列也需要加载到内存中进行复杂的“注意力”计算,这种注意力机制的内存需求与输入长度成二次方关系。

一、分层推理(Layer-wise Inference)

       分层推理是计算机科学中分而治之的基本方法。今天的大型语言模型都采用谷歌论文《Attention is all you need》中提出的多头自注意力结构,这就是人们后来所说的Transformer结构,Transformer结构如下图所示:

       大型语言模型首先是embedding投影层,之后是80个完全相同的transformer层,每个transformer层有一个LN和MLP层来预测token ID概率。

      在推理过程中,层按顺序执行,上一层的输出是下一层的输入,一次只执行一个层。因此,完全没有必要将所有层都保存在GPU内存中。我们可以在执行该层时从磁盘加载所需的任何层,进行所有计算,然后完全释放内存。这样,每层所需的GPU内存仅为一个transformer层的参数大小,即整个模型的1/80,约1.6GB。

       此外,一些输出缓存也存储在GPU内存中,最大的是KV缓存,以避免重复计算。对于70B模型,这个KV缓存大小大约是:

             2*input_length*num_layers*num_heads*vector_dim*4

输入长度为100时,此缓存=2*100*80*8*128*4=30MB GPU内存。

二、Flash Attention

       Flash attention可能是当今大型语言模型开发中最重要、最关键的优化之一,几乎所有的大型语言模型都采用该技术来优化。Flash attention思想受论文《Self-attention Does Not Need O(n²) Memory》启发,最初self-attention需要O(n²)内存(n是序列长度),论文认为实际上不需要保留O(n²)的中间结果,我们可以按顺序计算它们,不断更新一个中间结果,并丢弃其他所有结果,这将内存复杂性降低到O(logn)。

      Flash attention本质上是相似的,内存复杂度O(n)略高,但 Flash attention深度优化了cuda内存访问,实现了推理和训练的多倍加速。

       如图所示,最初的self-attention计算并存储O(n²)中间结果。Flash attention将计算拆分为许多小块,逐块计算,并将内存减少到一个块的大小。

三、模型文件共享

       原始模型文件通常被分为多个块,通常每个块10GB。我们的执行过程是一层一层的。每层只有1.6GB。如果我们基于原始10GB碎片进行加载,则每层执行都需要重新加载整个10GB文件,但仅使用1.6GB。这个过程浪费了大量用于加载和磁盘读取的内存。磁盘读取速度实际上是整个推理过程中最慢的瓶颈,所以我们希望尽可能地将其最小化。因此,我们首先对原始的HuggingFace模型文件进行预处理,并对其进行分层分割。

       对于存储,我们使用安全张量技术(https://github.com/huggingface/safetensors)。Safetensor确保存储格式和内存中格式紧密匹配,并使用内存映射进行加载以最大限度地提高速度。

四、元设备(Meta Device)

      我们使用HuggingFace Accelerate提供的Meta Device功能(https://huggingface.co/docs/accelerate/usage\\_guides/bigh\\_modeling)来实施。Meta Device是一种专门为运行超大型模型而设计的虚拟设备。当您通过Meta Device加载模型时,模型数据实际上并没有被读入,只是加载了代码,内存使用率为0。

       在执行过程中,您可以将模型的部分内容从Meta Device动态转移到CPU或GPU等真实设备。只有到那时,它才真正加载到内存中。

        使用init_empty_weights()可以通过Meta Device加载模型,代码如下:

from accelerate import init_empty_weightswith init_empty_weights():    my_model = ModelClass(...)

五、开源项目

       上述所有技术已经集成到AirLLM(https://github.com/lyogavin/anima/tree/main/air_llm)。使用参考如下:

       首先安装程序包:

pip install airllm

       像传统的Transformer模型一样执行分层推理,代码如下:

from airllm import AirLLMLlama2MAX_LENGTH = 128# could use hugging face model repo id:model = AirLLMLlama2("garage-bAInd/Platypus2-70B-instruct")# or use model's local path...#model = AirLLMLlama2("/home/ubuntu/.cache/huggingface/hub/models--garage-bAInd--Platypus2-70B-instruct/snapshots/b585e74bcaae02e52665d9ac6d23f4d0dbc81a0f")input_text = [        'What is the capital of United States?',    ]input_tokens = model.tokenizer(input_text,    return_tensors="pt",     return_attention_mask=False,     truncation=True,     max_length=MAX_LENGTH,     padding=True)           generation_output = model.generate(    input_tokens['input_ids'].cuda(),     max_new_tokens=20,    use_cache=True,    return_dict_in_generate=True)output = model.tokenizer.decode(generation_output.sequences[0])print(output)

       我们已经在16GB的Nvidia T4 GPU上测试了此代码。整个推理过程使用的GPU内存不足4GB。

PS:像T4这样的低端GPU的推理速度将相当慢。不太适合聊天机器人等交互式场景。更适合一些离线数据分析,如RAG、PDF分析等。目前仅支持基于Llam2的型号。

六、70B训练可以在单个GPU上进行吗?

       虽然推理可以通过分层进行优化,但训练在单个GPU上也能类似地工作吗?

       在执行下一个transformer层时,推理只需要上一层的输出,因此可以使用有限的数据进行分层执行。训练需要更多的数据,训练过程首先计算正向传播,得到每一层和张量的输出,然后进行反向传播来计算每个张量的梯度,梯度计算需要保存之前正向层的结果,因此分层执行不会减少内存。

       还有一些其他技术,如梯度检查点,可以实现类似的效果。

参考文献:

[1] https://ai.gopubby.com/unbelievable-run-70b-llm-inference-on-a-single-4gb-gpu-with-this-new-technique-93e2057c7eeb

[2] https://www.kaggle.com/code/simjeg/platypus2-70b-with-wikipedia-rag/notebook

这篇关于LLM推理部署(五):AirLLM使用4G显存即可在70B大模型上进行推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452507

相关文章

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

SpringBoot中整合RabbitMQ(测试+部署上线最新完整)的过程

《SpringBoot中整合RabbitMQ(测试+部署上线最新完整)的过程》本文详细介绍了如何在虚拟机和宝塔面板中安装RabbitMQ,并使用Java代码实现消息的发送和接收,通过异步通讯,可以优化... 目录一、RabbitMQ安装二、启动RabbitMQ三、javascript编写Java代码1、引入

Qt 中集成mqtt协议的使用方法

《Qt中集成mqtt协议的使用方法》文章介绍了如何在工程中引入qmqtt库,并通过声明一个单例类来暴露订阅到的主题数据,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一,引入qmqtt 库二,使用一,引入qmqtt 库我是将整个头文件/源文件都添加到了工程中进行编译,这样 跨平台

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个