实战案例:chatglm3 基础模型多轮对话微调

2023-12-03 23:04

本文主要是介绍实战案例:chatglm3 基础模型多轮对话微调,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

chatglm3 发布了,这次还发了base版本的模型,意味着我们可以基于这个base模型去自由地做SFT了。

本项目实现了基于base模型的SFT。

base模型

https://huggingface.co/THUDM/chatglm3-6b-base

由于模型较大,建议离线下载后放在代码目录,以"./chatglm3-6b-base"的路径进行调用。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

建了技术答疑、交流群!想要进交流群、需要资料的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、添加微信号:mlc2060,备注:技术交流
方式②、微信搜索公众号:机器学习社区,后台回复:技术交流

在这里插入图片描述

环境依赖

pip install protobuf transformers==4.30.2 peft cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate

除了transformers,其他库的版本一般问题不大,遇到缺失的直接pip install即可。

SFT数据格式

使用自己的数据可以参照formatted_samples.json文件,这里没有考虑system,实际使用可以根据自己的情况加上,需要修改chat_data_module.py中对应的数据处理部分。

附上chatglm3的prompt格式

<|system|>
You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully. Respond using markdown.
<|user|>
Hello
<|assistant|>
Hello, I'm ChatGLM3. What can I assist you today?

其实数据处理chat_data_module.py中会拼接一些token就是拼接user、assistant、换行等特殊token

SFT的方式

假设SFT的数据为

Q1,A1,Q2,A2,Q3,A3

SFT的过程只会计算

A1,A2,A3

的loss,且一次推理会同时计算多轮对话的loss。

如何微调

如果模型路径为"./chatglm3-6b-base",直接

python train.py

就可以运行。train.py 当中有需要可调节的参数可以自行调整。

微调效果

作为没有经过人类意图对齐的模型,ChatGLM3-6B-Base 不能用于多轮对话。但是可以进行文本续写。

这里仅通过27条数据进行SFT,发现模型就能够具有一定的对话能力了。

导入模型并合并

from transformers import AutoTokenizer, AutoModel
from peft import LoraConfig, PeftModel, get_peft_modeltokenizer = AutoTokenizer.from_pretrained("./chatglm3-6b-base", trust_remote_code=True)
model = AutoModel.from_pretrained("./chatglm3-6b-base", trust_remote_code=True).half().cuda()peft_model_id = './trained_model/checkpoint-35'
model = PeftModel.from_pretrained(model, peft_model_id)
Loading checkpoint shards:   0%|          | 0/7 [00:00<?, ?it/s]
history = []
query = "你是谁"
role = "user"
inputs = tokenizer.build_chat_input(query, history=history, role=role)
inputs = inputs.to('cuda')
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),tokenizer.get_command("<|observation|>")]
gen_kwargs = {"max_length": 500, "num_beams": 1, "do_sample": True, "top_p": 0.8,"temperature": 0.8}
outputs = model.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
response = tokenizer.decode(outputs)
history = []
history.append({"role": "user", "content": "你是谁"})
response, history = model.process_response(response, history)
print(response)

我叫MONY,是一个AI机器人。

query = "你能干嘛呀"
role = "user"
inputs = tokenizer.build_chat_input(query, history=history, role=role)
inputs = inputs.to('cuda')
outputs = model.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
response = tokenizer.decode(outputs)
history.append({"role": role, "content": query})
response, history = model.process_response(response, history)
print(response)

我能够陪你聊天呀。

query = "你认识乐乐吗"
role = "user"
inputs = tokenizer.build_chat_input(query, history=history, role=role)
inputs = inputs.to('cuda')
outputs = model.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
response = tokenizer.decode(outputs)
history.append({"role": role, "content": query})
response, history = model.process_response(response, history)
print(response)

我不认识乐乐。

query = "可以夸一下乐乐长得好看吗"
role = "user"
inputs = tokenizer.build_chat_input(query, history=history, role=role)
inputs = inputs.to('cuda')
outputs = model.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
response = tokenizer.decode(outputs)
history.append({"role": role, "content": query})
response, history = model.process_response(response, history)
print(response)

乐乐听起来是一个人名,我不认识他。

query = "你要夸她长得好看"
role = "user"
inputs = tokenizer.build_chat_input(query, history=history, role=role)
inputs = inputs.to('cuda')
outputs = model.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
response = tokenizer.decode(outputs)
history.append({"role": role, "content": query})
response, history = model.process_response(response, history)
print(response)

好的,我会记住的。

query = "你倒是夸一下呀"
role = "user"
inputs = tokenizer.build_chat_input(query, history=history, role=role)
inputs = inputs.to('cuda')
outputs = model.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
response = tokenizer.decode(outputs)
history.append({"role": role, "content": query})
response, history = model.process_response(response, history)
print(response)

乐乐是一个很可爱的人。

项目地址

https://github.com/minghaochen/chatglm3-base-tuning

References

代码参考自llamatune项目
https://github.com/havenhq/haven/tree/dev/llamatune

这篇关于实战案例:chatglm3 基础模型多轮对话微调的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451202

相关文章

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固 通俗易懂版)

《MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固通俗易懂版)》本文主要讲解了MySQL中的多表查询,包括子查询、笛卡尔积、自连接、多表查询的实现方法以及多列子查询等,通过实际例子和操... 目录复合查询1. 回顾查询基本操作group by 分组having1. 显示部门号为10的部门名,员