基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统——机器学习算法应用(含Python工程源码)+数据集(三)

本文主要是介绍基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统——机器学习算法应用(含Python工程源码)+数据集(三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
    • Python环境
    • Pycharm 环境
    • Scikit-learnt
  • 模块实现
    • 1. 数据预处理
    • 2. 客流预测
    • 3. 百度地图API调用
    • 4. GUI界面设计
      • 1)手绘地图导入
      • 2)下拉菜单设计
      • 3)复选框设计
      • 4)最短路径结果输出界面设计
      • 5)智能推荐结果输出设计
      • 6)界面展示
    • 5. 路径规划
    • 6. 智能推荐
  • 相关其它博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目的核心是利用百度地图API获取步行时间和借助GBDT(梯度提升决策树)模型进行排队时间的预测。它旨在为用户提供一种自主选择多个目的地的功能,然后系统会输出最佳路线规划的结果,并根据用户的选择提供智能化的建议。

首先,项目利用百度地图API,能够获取到步行时间信息。这些信息包括从一个地点到另一个地点所需的预计步行时间。这个步骤确保了系统具有地理位置感知能力,可以理解用户的出行需求。

接下来,项目使用GBDT模型,这是一种强大的机器学习模型,用于预测排队时间。GBDT模型会考虑多个因素,如交通状况、目的地之间的距离、历史排队数据等,来预测用户在不同地点排队的时间。

一旦获取了这些信息,系统可以让用户自主选择多个目的地。用户可以输入他们的出发点和多个目标地点,然后系统会根据百度地图API的步行时间和GBDT模型的排队时间预测,计算出最佳路线规划。这个规划考虑了用户的时间限制、排队时间、步行时间等因素,以确保用户能够在最短的时间内到达所有目的地。

最后,系统还可以根据用户的选择,提供智能化的建议。例如,如果用户希望优先选择最短排队时间的目的地,系统可以相应地调整路线规划。

总的来说,这个项目结合了地图数据和机器学习技术,为用户提供了一个方便的自主选择多个目的地并获取最佳路线规划的工具。这对于城市出行和旅游规划非常有用,可以帮助用户更高效地安排行程。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述
路径规划流程如图所示。
在这里插入图片描述

计算路径耗时流程,如图所示。

在这里插入图片描述

运行环境

本部分包括 Python 环境、Pycharm 环境和Scikit-learn环境。

Python环境

需要Python 3.6及以上配置,在Windows环境下推荐下载Anaconda完成Python所需环境的配置,下载地址为https://www.anaconda.com/,也可下载虚拟机在Linux环境下运行代码。

Pycharm 环境

PyCharm下载地址为http://www.jetbrains.com/pycharm/download/#section=windows,进入网站后单击Comminity版本下的DOWNLOAD下载安装包,下载完成后安装。单击Create New Project创建新的项目文件,Location为存放工程的路径,单击project附近的三角符号,可以看到PyCharm已经自动获取Python 3.6,单击create完成。

Scikit-learnt

安装CPU版本的Scikit-learn: pip install -U --ignore-installed scikit-learn, 或者从Anaconda环境中直接搜索 scikit-learn包进行下载、安装。

模块实现

本项目包括6个模块:数据预处理、客流预测、百度地图API调用、GUI界面设计、路径规划和智能推荐,下面分别给出各模块的功能介绍及相关代码。

1. 数据预处理

详见博客:https://blog.csdn.net/qq_31136513/article/details/133011765#1__49

2. 客流预测

详见博客:https://blog.csdn.net/qq_31136513/article/details/133011802#2__54

3. 百度地图API调用

详见博客:https://blog.csdn.net/qq_31136513/article/details/133011802#3_API_134

4. GUI界面设计

导入Tkinter包进行GUI设计。用户通过下拉菜单手动选择当前位置,勾选目的地。单击“确认”按钮后调用create()函数跳转至最佳路线输出界面。

1)手绘地图导入

相关代码如下:

#背景初始化部分
window = tkinter.Tk()
window.geometry('900x500')
window.title('智能导航系统——欢乐谷')
#显示图片
#通过PIL打开图片
img = Image.open('C:/Users/99509/Desktop/map.jpg')  
img = img.resize((750,500),Image.ANTIALIAS) #Image.ANTIALIAS使图片不模糊
#通过PIL生成PhotoImage对象,即可正常加载
photo = ImageTk.PhotoImage(img)
imageLabel = Label(window, image=photo)
imageLabel.pack(side=LEFT)

2)下拉菜单设计

相关代码如下:

ss=Label(window,text="您当前位置为",justify=RIGHT)
ss.pack()
comvalue=tkinter.StringVar() #窗体自带的文本,新建一个值  
comboxlist=ttk.Combobox(window,textvariable=comvalue) #初始化  
comboxlist["values"]=("入口","玛雅天灾","雪域金翅","异域魔窟","奥德赛之旅","太阳神车","天地双雄","能量风暴")  
all_paths_first=""
def xFunc(event):global all_paths_first#print(comboxlist.get())#当前位置if comboxlist.get()=="入口":all_paths_first=0elif comboxlist.get()=="玛雅天灾":all_paths_first=1elif comboxlist.get()=="雪域金翅":all_paths_first=2elif comboxlist.get()=="异域魔窟":all_paths_first=3elif comboxlist.get()=="奥德赛之旅":all_paths_first=4elif comboxlist.get()=="太阳神车":all_paths_first=5elif comboxlist.get()=="天地双雄":all_paths_first=6elif comboxlist.get()=="能量风暴":all_paths_first=7
comboxlist.bind("<<ComboboxSelected>>",xFunc)  
#绑定事件,(下拉列表框被选中时,绑定xFunc()函数)  
comboxlist.pack()  

3)复选框设计

复选框格式是一致的,为了界面简洁,只展示一个复选框设计。

#count判断是否需要调用百度地图API,奇数表示选中
count1=0
N = []
def myEvent1():global count1if count1%2==0:count1+=1else:count1+=1
#项目选择部分
v1=IntVar()
c1=Checkbutton(window,text='入口',variable=v1,justify=RIGHT,command=myEvent1) #存放选中状态
c1.pack()
l1=Label(window,textvariable=v1,justify=RIGHT)
l1.pack() #未选中显示为0,选中显示为1

4)最短路径结果输出界面设计

相关代码如下:

total=[]    #存放被选择的目的地
total_n=[]  #存放未被选择的地点
#选择地点完成后调出最短路径结果输出界面
def create():window2 = tkinter.Toplevel() #新建子窗口windows2window2.geometry('300x200')window2.title('计算页面')s0=Label(window2,text="您选择了:") #文字框s0s0.pack()    #选择目的地if count1%2==1:          #如果被选中N.append(0)           #N列表中增加0total.append("入口") #total列表中增加“入口”else:                       #如果未被选中N_notchoose.append(0) #N_notchoose列表中增加0total_n.append("入口") #total_n列表中增加“入口”if count2%2==1: #以下同理N.append(1)total.append("玛雅天灾")else:N_notchoose.append(1)total_n.append("玛雅天灾")if count3%2==1:N.append(2)total.append("雪域金翅")else:N_notchoose.append(2)total_n.append("雪域金翅")if count4%2==1:N.append(3)total.append("异域魔窟")else:N_notchoose.append(3)total_n.append("异域魔窟")if count5%2==1:N.append(4)total.append("奥德赛之旅")else:N_notchoose.append(4)total_n.append("奥德赛之旅")if count6%2==1:N.append(5)total.append("太阳神车")else:N_notchoose.append(5)total_n.append("太阳神车")if count7%2==1:N.append(6)total.append("天地双雄")else:N_notchoose.append(6)total_n.append("天地双雄")if count8%2==1:N.append(7)total.append("能量风暴")else:N_notchoose.append(7)total_n.append("能量风暴")s_total=Label(window2,text=total) #输出用户选中的地点s_total.pack()s9=Label(window2,text="最佳路线为:") #文字框s9s9.pack()get_time(N) #调用get_time进行运算PLAN=[]     #用于存放计划路径#输出路径for i in range(0,len(N)+1):if PATH[i]==0:PLAN.append("入口")elif PATH[i]==1:PLAN.append("玛雅天灾")elif PATH[i]==2:PLAN.append("雪域金翅")elif PATH[i]==3:PLAN.append("异域魔窟")elif PATH[i]==4:PLAN.append("奥德赛之旅")elif PATH[i]==5:PLAN.append("太阳神车")elif PATH[i]==6:PLAN.append("天地双雄")else:PLAN.append("能量风暴")s10=Label(window2,text=PLAN) #输出计划的最短路径s10.pack()s11=Label(window2,text="\n大约耗时:"+str(round(TIME[0],2))+"小时") 
#输出对应总耗时s11.pack()b2=Button(window2,text='猜你喜欢',command=create_guess) 
#新建“猜你喜欢”按钮进入智能推荐模块b2.pack()b3=Button(window2,text='退出',command=window.destroy)  #退出按钮b3.pack() 

5)智能推荐结果输出设计

相关代码如下:

#创建智能推荐的页面
def create_guess():window3 = tkinter.Toplevel() #新建子窗口windows3window3.geometry('400x250')window3.title('猜你喜欢')s0=Label(window3,text="您选择了:") #文字框s0s0.pack()s_total=Label(window3,text=total) #输出用户选中的地点s_total.pack()s7=Label(window3,text="为您推荐:") #文字框s7s7.pack()try:guess_time(N) #调用guess_time函数,计算推荐地点及推荐最短路径except:tkinter.messagebox.showwarning("提示", "选取地点有误!\n请退出重新选取")
#加入异常处理,跳出提示框PLAN=[] #存放推荐最短路径#输出路径for i in range(0,len(N)+2):if PATH_guess[i]==0:PLAN.append("入口")elif PATH_guess[i]==1:PLAN.append("玛雅天灾")elif PATH_guess[i]==2:PLAN.append("雪域金翅")elif PATH_guess[i]==3:PLAN.append("异域魔窟")elif PATH_guess[i]==4:PLAN.append("奥德赛之旅")elif PATH_guess[i]==5:PLAN.append("太阳神车")elif PATH_guess[i]==6:PLAN.append("天地双雄")else:PLAN.append("能量风暴")s8=Label(window3,text=location[recommend]) #输出推荐的地点s8.pack()s9=Label(window3,text="加入推荐地点的最佳路线为:") #文本框s9s9.pack()s10=Label(window3,text=PLAN) #输出推荐的最短路径s10.pack()s11=Label(window3,text="\n大约耗时:"+str(round(TIME_guess[0],2))+"小时") #输出推荐的总耗时s11.pack()s12=Label(window3,text="预计比原路线多花费:"+str(round((TIME_guess[0]-TIME[0]),2))+"小时") #输出推荐一个地点后的总耗时与之前总耗时的差s12.pack()b3=Button(window3,text='返回',command=window3.destroy) 
#“返回”按钮,返回上一界面b3.pack()b4=Button(window3,text='退出',command=window.destroy) 
#“退出”按钮,退出程序b4.pack()

6)界面展示

GUI主页面如图所示。
在这里插入图片描述

下拉菜单如图所示。
在这里插入图片描述

5. 路径规划

通过调用百度地图API模块产生节点之间的步行时间矩阵和客流模型,应用穷举法设计算法,得出最佳路线规划。

GUI界面下拉菜单中选择当前位置作为所有可能线路的起点,复选框中目的地作为节点,调用itertools库中的permutations()函数进行全排列,路线每到节点时间、排队时间输出在cmd窗口,如图所示。

在这里插入图片描述

最佳路线和总耗时输出在GUI模块设计的界面当中,如图所示。

在这里插入图片描述
相关代码如下:

#获得最佳路径和出游时间
def get_time(N):global TIMEglobal PATHgbdt_6_model_path = "D:/~STUDY~/Grade3/信息系统设计/final_files/data/模型/gbdt_6.model" gbdt_model = joblib.load(gbdt_6_model_path) #加载模型#初始化客流模型顺序不可改变features=pd.DataFrame({'temperature_average':[2],'wind_average':[0],'weather_average':[6],'time':[0],'isholiday':[0],'dayofweek':[1]})#N = [0,1,2,3] #GUI界面单击选择n=len(N)+1print(all_paths_first)all_paths_tuple=list(itertools.permutations(N,n-1)) 
#得到的全排列是元组tupleall_paths=[]#tuple类型不能插入操作,所以转换成listfor i in range(0,math.factorial(n-1)):all_paths.append(list(all_paths_tuple[i]))all_paths[i].insert(0,all_paths_first)path = list()all_time = float('inf') #无穷大#第i条路线for i in range(0,math.factorial(n-1)):time = 0 #(h)nowtime = 9 #可以获取当前时间,需要事件表示的转换(h)print("第"+str(i+1)+"条路线为:"+str(all_paths[i]))#第i条路线的第j个地点for j in range(0,n-1):time = time + (walk_time[all_paths[i][j]][all_paths[i][j+1]]/3600) 
#到达一个地点的时间nowtime = nowtime+time features['time'] = nowtimegbdt_predict_labels = gbdt_model.predict(features)/2000 
#客流量/2000当作时间(h)print("现在的时间是:"+str(nowtime)+" 此时"+str(j)+"点的排队时间为:"+str(gbdt_predict_labels)+"h")time = time + gbdt_predict_labels + (PLAYTIME[j]/60)print("耗时为:"+str(time))
print("===================================================================")if all_time>time:all_time = timepath = all_paths[i]print("耗时最短的路径为:"+str(path)+" 耗时为:"+str(all_time))PATH = pathTIME = all_time

6. 智能推荐

系统将用户未选择的地点一次分别加入已选择的队列中进行运算,其基本思路与最佳路线规划模块一致,采用穷举法得到所有路线及其总耗时,最后将它们输出,实现智能推荐。

相关代码如下:

#智能推荐“猜你喜欢”的运算
def guess_time(N):global TIME_guessglobal PATH_guessglobal recommendpath_whole = list()all_time_whole = float('inf') #无穷大gbdt_6_model_path = "D:/~STUDY~/Grade3/信息系统设计/final_files/data/模型/gbdt_6.model" gbdt_model = joblib.load(gbdt_6_model_path) #加载模型features=pd.DataFrame({'temperature_average':[2],'wind_average':[0],'weather_average':[6],'time':[0],'isholiday':[0],'dayofweek':[1]})#N = [0,1,2,3] #GUI界面单击选择print('起点是:'+str(all_paths_first))for nn in range(0,len(N_notchoose)): 
#把未选择的地点分别加入到已选择的队列中进行计算guess_path = []guess_path = N[:]guess_path.append(N_notchoose[nn]) #构建推荐的列表print(guess_path)if(all_paths_first in guess_path):pass    #如果未选择的地点是起点,则跳过else:all_paths_tuple=list(itertools.permutations(guess_path,len(guess_path))) 
#得到的全排列是元组tupleall_paths=[]#tuple类型不能插入操作,所以转换成list#for i in range(0,math.factorial(n-1)):调试代码for i in range(0,math.factorial(len(guess_path))):all_paths.append(list(all_paths_tuple[i]))all_paths[i].insert(0,all_paths_first)path = list()all_time = float('inf') #无穷大#第i条路线for i in range(0,math.factorial(len(guess_path))):time = 0 #(h)nowtime = 9 #可以获取当前时间,需要事件表示的转换(h)print("第"+str(i+1)+"条路线为:"+str(all_paths[i]))#第i条路线的第j个地点for j in range(0,len(guess_path)):time = time + (walk_time[all_paths[i][j]][all_paths[i][j+1]]/3600) 
#到达一个地点的时间nowtime = nowtime+time features['time'] = nowtimegbdt_predict_labels = gbdt_model.predict(features)/2000 
#客流量/2000当作时间(h)print("现在的时间是:"+str(nowtime)+" 此时"+str(j)+"点的排队时间为:"+str(gbdt_predict_labels)+"h")time = time + gbdt_predict_labels + (PLAYTIME[j]/60)print("耗时为:"+str(time))print("")if all_time>time:all_time = timepath = all_paths[i]if all_time_whole>all_time:all_time_whole = all_timepath_whole=path[:]recommend = N_notchoose[nn]print("推荐第"+str(recommend)+"个景点")print("推荐第"+str(recommend)+"个景点")print("智能推荐耗时最短的路径为a:"+str(path_whole)+"  耗时为:"+str(all_time_whole))PATH_guess = path_wholeTIME_guess = all_time_whole

在cmd窗口输出所有路径及该路径每到一节点的时间,如图所示。

在这里插入图片描述

在GUI模块设计的界面中显示最佳路线和总耗时,如图所示。

在这里插入图片描述

相关其它博客

基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统——机器学习算法应用(含Python工程源码)+数据集(一)

基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统——机器学习算法应用(含Python工程源码)+数据集(二)

基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统——机器学习算法应用(含Python工程源码)+数据集(四)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

这篇关于基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统——机器学习算法应用(含Python工程源码)+数据集(三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/qq_31136513/article/details/133014188
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/425413

相关文章

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字