【自主探索】基于 frontier_exploration 的单个机器人自主探索建图

2023-11-26 04:30

本文主要是介绍【自主探索】基于 frontier_exploration 的单个机器人自主探索建图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、概述
    • 1、功能
    • 2、要求
  • 二、使用方法
    • 1、用于运行演示
    • 2、用于开发人员
      • 2.1. 探索无/地图数据
      • 2.2. 使用 /map 数据进行探索
  • 三、提供的组件
    • 1、explore_client
      • 1.1. 调用的操作
      • 1.2. 订阅主题
      • 1.3. 发布主题
    • 2、explore_server
      • 2.1. 提供的操作
      • 2.2. 调用的操作
      • 2.3. 调用的服务
      • 2.4. 参数
    • 3、BoundedExploreLayer
      • 3.1. 发布主题
      • 3.2. 服务
      • 3.3. 参数

一、概述

尝试 frontier_exploration 的最佳方法是使用 husky_navigation 中提供的演示,请参阅演示教程。

1、功能

frontier_exploration 软件包提供了 costmap_2d 层插件 BoundedExploreLayer 以及 actionlib 客户端/服务器节点 explore_client 和 explore_server。

所提供的节点可用于演示成本图层的功能,方法是执行一个以用户定义的多边形区域为边界的边界探索任务。

BoundedExploreLayer 图层当然也可用于执行更复杂的勘探任务,其功能通过两个服务实现: UpdatePolygonBoundary 和 GetNextFrontier。

2、要求

使用本软件包进行边界探索,需要一个真实或模拟的机器人配置,以提供以下功能:

  1. 激光扫描仪或类似传感器,可清理空间并标记障碍物。
  2. 适当配置的导航堆栈,可接受移动基地的行动目标。
  3. (可选)由 map_server、gmapping 或 move_base 提供的全局 / 地图

二、使用方法

1、用于运行演示

使用预先存在的机器人和配置,您可以运行一个演示,看看该软件包如何工作。

  1. 安装 frontier_exploration 算法
sudo apt-get install ros-kinetic-frontier-exploration ros-kinetic-navigation-stage
  1. 在独立终端逐一运行必要的节点:
roslaunch navigation_stage move_base_gmapping_5cm.launch
roslaunch navigation_stage move_base.xml
roslaunch frontier_exploration global_map.launch

弹出 RViz,然后在地图中心周围出现一个演示机器人。

  1. 在 RViz 上打开 Marker 插件(RViz 插件可在弹出窗口中选择,通过 "添加 "按钮打开)。
  2. 下拉 "Displays --> Marker --> Marker Topic "菜单,然后选择 "exploration_polygon_marker "主题。
  3. 在 RViz 的地图上,想一个您希望机器人探索的区域。
  4. 点击 RViz 顶部的 “Publish Point”。
  5. 点击该区域 n 个角中的一个角(如果您的区域是正方形/长方形,请点击 n=4 个角)。
  6. 重复上述第 6 和第 7 步 n 次。之后你会看到一个有 n 个角的多边形。
  7. 再次执行步骤 6,然后点击多边形内的任意位置。

视频演示

报错:The goal pose passed to this planner must be in the map frame. It is instead in the base_footprint frame
解决方案:在rviz中,Fixed Frame选择"map"。或者在发布move_base/goal的时候,把frame_id设置为map。

2、用于开发人员

如果你只是想开始利用这个软件包的功能,husky_navigation 软件包中的教程会有所帮助。

如果你想了解得更深入一些,一般来说,当启动 explore_server 时,它会一直旋转,直到收到一个探索目标。要提交目标:

  1. 使用 explore_client 和 RViz - 在 Rviz 中为 exploration_polygon_marker 主题创建一个标记显示,并使用工具栏上的 "Click Point "工具标记探索边界。留意 ROS 控制台对所选边界的反馈。
  2. 通过 actionlib SimpleActionClient,用自己的节点向服务器提交目标。

探索目标包含一个开始探索的初始点和一个限制探索范围的多边形边界。要运行无边界探索任务,只需将边界留空即可。

服务器收到目标后,就会创建初始探索地图,开始处理传感器/成本地图数据,并发出 move_base 行动目标。默认情况下,探索任务将探索边界内的所有区域(无论之前是否访问过)。下面提供了几种使用案例的启动文件示例。

2.1. 探索无/地图数据

在没有全局/地图信息源的情况下运行动作服务器/客户端时,请启用 resize_too_boundary 参数,以便根据动作目标的多边形边界动态调整地图大小。当机器人在探索边界外行进时,costmap_2d 会出现传感器超出地图边界的错误信息。这些信息可以安全地忽略,也可以使用 rosconsole 配置文件加以抑制。

如果不使用 resize_to_boundary(例如运行无边界探索),请确保成本地图配置了足够大的高度/宽度。

启动文件示例:no_global_map.launch

<launch><!-- Set to your sensor's range --><arg name="sensor_range" default="1.0"/><node pkg="frontier_exploration" type="explore_client" name="explore_client" output="screen"/><node pkg="frontier_exploration" type="explore_server" name="explore_server" output="screen" ><param name="frequency" type="double" value="2.0"/><param name="goal_aliasing" type="double" value="$(arg sensor_range)"/>#All standard costmap_2d parameters as in move_base, other than BoundedExploreLayer<rosparam ns="explore_costmap" subst_value="true">#Sample parametersfootprint: [[0.1, 0.0], [0.0, 0.1], [0.0, -0.1], [-0.1, 0.0]]robot_radius: 0.10transform_tolerance: 0.5update_frequency: 5.0publish_frequency: 5.0global_frame: maprobot_base_frame: base_linkresolution: 0.05rolling_window: falsetrack_unknown_space: trueplugins: - {name: explore_boundary, type: "frontier_exploration::BoundedExploreLayer"}- {name: sensor,           type: "costmap_2d::ObstacleLayer"}- {name: inflation,        type: "costmap_2d::InflationLayer"}explore_boundary:resize_to_boundary: truefrontier_travel_point: closestsensor:observation_sources: laserlaser: {data_type: LaserScan, clearing: true, marking: true, topic: scan, inf_is_valid: true, raytrace_range: $(arg sensor_range), obstacle_range: $(arg sensor_range)}inflation:inflation_radius: 0.15</rosparam></node>
</launch>

2.2. 使用 /map 数据进行探索

在使用全局 /map 信息源(来自 map_server 或 gmapping)运行动作服务器/客户端时,勘探成本地图的大小/分辨率将与静态图层加载的外部地图源地图相匹配,因此必须禁用 resize_too_boundary 参数,并且勘探成本地图的 global_frame 必须与外部 /map 相匹配。

使用 gmapping 进行探索时,还必须禁用 explore_clear_space,以防止节点重新探索已知区域。

启动文件示例:global_map.launch

<launch><!-- Set to your sensor's range --><arg name="sensor_range" default="1.0"/><node pkg="frontier_exploration" type="explore_client" name="explore_client" output="screen"/><node pkg="frontier_exploration" type="explore_server" name="explore_server" output="screen" ><param name="frequency" type="double" value="2.0"/><param name="goal_aliasing" type="double" value="$(arg sensor_range)"/>#All standard costmap_2d parameters as in move_base, other than BoundedExploreLayer<rosparam ns="explore_costmap" subst_value="true">footprint: [[0.1, 0.0], [0.0, 0.1], [0.0, -0.1], [-0.1, 0.0]]robot_radius: 0.10transform_tolerance: 0.5update_frequency: 5.0publish_frequency: 5.0#must match incoming static mapglobal_frame: maprobot_base_frame: base_linkresolution: 0.05rolling_window: falsetrack_unknown_space: trueplugins: - {name: static,           type: "costmap_2d::StaticLayer"}            - {name: explore_boundary, type: "frontier_exploration::BoundedExploreLayer"}#Can disable sensor layer if gmapping is fast enough to update scans- {name: sensor,           type: "costmap_2d::ObstacleLayer"}- {name: inflation,        type: "costmap_2d::InflationLayer"}static:#Can pull data from gmapping, map_server or a non-rolling costmap            map_topic: /map# map_topic: move_base/global_costmap/costmap   subscribe_to_updates: trueexplore_boundary:resize_to_boundary: falsefrontier_travel_point: middle#set to false for gmapping, true if re-exploring a known areaexplore_clear_space: falsesensor:observation_sources: laserlaser: {data_type: LaserScan, clearing: true, marking: true, topic: scan, inf_is_valid: true, raytrace_range: $(arg sensor_range), obstacle_range: $(arg sensor_range)}inflation:inflation_radius: 0.15</rosparam></node></launch>

三、提供的组件

1、explore_client

explore_client 节点侦听 Rviz 发布的点,并构建一个 ExploreTask 行动目标发送给 explore_server。

1.1. 调用的操作

  • explore_server (frontier_exploration/ExploreTask)
    向 explore_server 发送探索目标的客户端。

1.2. 订阅主题

  • /clicked_point (geometry_msgs/PointStamped)
    从 rviz 工具点击的点。

1.3. 发布主题

  • exploration_polygon_marker (visualization_msgs/Marker)
    通过点击点实现边界可视化。

2、explore_server

explore_server 节点为所有已连接的客户端执行探索操作。它使用 costmap_2d 对象来跟踪探索进度,并在必要时为 move_base 创建移动目标。

2.1. 提供的操作

  • explore_server (frontier_exploration/ExploreTask)
    接收勘探任务请求的服务器

2.2. 调用的操作

  • move_base(move_base_msgs/MoveBaseAction)
    向 move_base 发送移动目标的客户端。

2.3. 调用的服务

  • ~explore_costmap/explore_boundary/update_boundary_polygon (frontier_exploration/UpdateBoundaryPolygon)
    (来自 Costmap 的内部服务)为勘探任务设置边界。
  • ~explore_costmap/explore_boundary/get_next_frontier (frontier_exploration/GetNextFrontier)
    (来自 Costmap 的内部服务)获取下一个要探索的边界的姿态。

2.4. 参数

  • ~explore_costmap (插件)
    内部 costmap 图层的配置,预计包含 BoundedExploreLayer。
  • ~frequency (浮点数,默认值:0.0)
    为下一个边界目标重新处理代价图的频率。如果频率为 0.0,则只有在通过 move_base 达到上一个边界目标时,才会询问新的边界目标。频率越高,提交 move_base 目标的频率越高,探索过程也就越 “平滑”。
  • ~goal_aliasing (浮点数,默认值:0.1)
    当频率 > 0.0 时,~goal_aliasing 是在新目标提交给 move_base 之前,上一个目标和新目标之间所需的距离 delta。在 sensor_range/2 > ~goal_aliasing > 0.0 范围内的任何位置设置都是安全的,而且该参数将减少 "平滑 "探索过程中发送的冗余目标数量。

3、BoundedExploreLayer

frontier_exploration::BoundedExploreLayer 层是一个 costmap_2d 插件,它实现了执行边界探索任务所需的若干功能。

3.1. 发布主题

  • ~frontiers (sensor_msgs/PointCloud2)
    点云 pcl::Pointcloud< pcl::PointXYZI> 在调用 ~get_next_frontier 服务时标记检测到的所有边界,并使用强度较高的点标记所选边界。

3.2. 服务

  • ~update_boundary_polygon (frontier_exploration/UpdateBoundaryPolygon)
    为探索任务设置边界。
  • ~get_next_frontier (frontier_exploration/GetNextFrontier)
    获取下一个探索边界的姿态。

3.3. 参数

  • ~resize_too_boundary (bool,默认:false)
    当通过 ~update_boundary_polygon 接收到多边形边界时,会根据边界极值调整图层父成本贴图的大小。
  • ~frontier_travel_point (字符串,默认:最近)
    通过 ~get_next_frontier 输出下一个边界的姿态时,定义要输出为 pose.position 的边界几何属性。可用:离机器人最近的点、边界的中间点、所有边界点的中心点(笛卡尔平均值)。
  • ~explore_clear_space (bool,默认:true)
    配置探索任务是探索所有清晰空间(true),还是只探索未知空间(false)。

算法流程图如下所示:
在这里插入图片描述

参考:

  1. https://github.com/paulbovbel/frontier_exploration
  2. http://wiki.ros.org/frontier_exploration
  3. ROS学习笔记之——基于frontier_exploration的机器人自主探索(未成功运行)
  4. 结合frontier_exploration + gmapping + move_base包实现指定区域建图
  5. 【SLAM】ROS平台下三种自主探索算法总结

这篇关于【自主探索】基于 frontier_exploration 的单个机器人自主探索建图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/425118

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

轻松录制每一刻:探索2024年免费高清录屏应用

你不会还在用一些社交工具来录屏吧?现在的市面上有不少免费录屏的软件了。别看如软件是免费的,它的功能比起社交工具的录屏功能来说全面的多。这次我就分享几款我用过的录屏工具。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  这个软件的操作方式非常简单,打开软件之后从界面设计就能看出来这个软件操作的便捷性。界面的设计简单明了基本一打眼你就会轻松驾驭啦

深入探索嵌入式 Linux

摘要:本文深入探究嵌入式 Linux。首先回顾其发展历程,从早期尝试到克服诸多困难逐渐成熟。接着阐述其体系结构,涵盖硬件、内核、文件系统和应用层。开发环境方面包括交叉编译工具链、调试工具和集成开发环境。在应用领域,广泛应用于消费电子、工业控制、汽车电子和智能家居等领域。关键技术有内核裁剪与优化、设备驱动程序开发、实时性增强和电源管理等。最后展望其未来发展趋势,如与物联网融合、人工智能应用、安全性与

基于树梅派的视频监控机器人Verybot

最近这段时间做了一个基于树梅派 ( raspberry pi ) 的视频监控机器人平台 Verybot ,现在打算把这个机器人的一些图片、视频、设计思路进行公开,并且希望跟大家一起研究相关的各种问题,下面是两张机器人的照片:         图片1:                   图片2                    这个平台的基本组成是:

【vue3|第28期】 Vue3 + Vue Router:探索路由重定向的使用与作用

日期:2024年9月8日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉在这里插入代码片得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方,还望各位大佬不吝赐教,谢谢^ - ^ 1.01365 = 37.7834;0.99365 = 0.0255 1.02365 = 1377.4083;0.98365 = 0.0006 说

多云架构下大模型训练的存储稳定性探索

一、多云架构与大模型训练的融合 (一)多云架构的优势与挑战 多云架构为大模型训练带来了诸多优势。首先,资源灵活性显著提高,不同的云平台可以提供不同类型的计算资源和存储服务,满足大模型训练在不同阶段的需求。例如,某些云平台可能在 GPU 计算资源上具有优势,而另一些则在存储成本或性能上表现出色,企业可以根据实际情况进行选择和组合。其次,扩展性得以增强,当大模型的规模不断扩大时,单一云平