LeetCode算法题解(动态规划)|LeetCode322. 零钱兑换、LeetCode279. 完全平方数

本文主要是介绍LeetCode算法题解(动态规划)|LeetCode322. 零钱兑换、LeetCode279. 完全平方数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、LeetCode322. 零钱兑换

题目链接:322. 零钱兑换
题目描述:

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 231 - 1
  • 0 <= amount <= 104
算法分析:

题目给出硬币的数量无限,所以这是一道完全背包问题。

定义dp数组及下标含义:

dp[j]表示凑成金额为j所需的硬币最少个数。

递推公式:

dp[j]=min(dp[j],dp[j-coins[i]]+1),现有硬币coins[i],那么凑成金额为j所需的最少硬币数可有凑成金额为j-coins[i]所需最少硬币数推出。

初始化:

因为要求的是最少硬币数,所以除dp[0]初始化成0之外,其他所有情况都要初始化成最大值。

遍历顺序:

先遍历不同面额的硬币,在遍历总金额。

打印dp数组进行验证。

代码如下:

class Solution {public int coinChange(int[] coins, int amount) {int[] dp = new int[amount + 1];for(int i = 1; i < amount + 1; i++) dp[i] = Integer.MAX_VALUE;dp[0] = 0;//除了dp[0]其他都初始化成最大值for(int i = 0; i < coins.length; i++) {//遍历每种硬币for(int j = coins[i]; j <= amount; j++) {//遍历总金额if(dp[j - coins[i]] != Integer.MAX_VALUE) {//注意如果dp[j-coins[i]]是个最大int类型整数的话,dp[j-coins[i]]+1会溢出,变成负数,从而影响比较结果,所以只有它不是初始最大值是,才有选择的必要。dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}}return dp[amount] == Integer.MAX_VALUE ? -1 : dp[amount];}
}

二、LeetCode279. 完全平方数

题目链接:279. 完全平方数
题目描述:

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

 

提示:

  • 1 <= n <= 104
算法分析:

因为每个完全平方数可以无限取,所以这也是一道完全背包问题。

定义dp数组及下标含义:

dp[j]表示组成和为j的完全平方数最少数量。

递推公式:

dp[j]=min(dp[j],dp[j-i*i]+1),现有完全平方数i*i,那么组成j的最少完全平方数数量可有dp[j-i*i]推导而出,也即组成j-i*i的最少完全平方数数量加上现在这个完全平方数(i*i)。

初始化:

因为要求的是完全平方数最少数量,所以除dp[0]初始化成0外,其他所有情况都要初始化成最大值。

遍历顺序:

先遍历小于等于目标和n的每个完全平方数,在遍历总和。

打印dp数组进行验证。

代码如下:

class Solution {public int numSquares(int n) {int[] dp = new int[n + 1];//除dp[0]意外,其他所有情况都初始化成最大值dp[0] = 0;for(int i = 1; i <= n; i++)dp[i] = Integer.MAX_VALUE;for(int i = 1; i * i <= n; i++) {//遍历每个完全平方数for(int j = i * i; j <= n; j++) {//遍历总和dp[j] = Math.min(dp[j],dp[j-i * i] + 1);}}return dp[n];}
}

总结

这两道题都是完全背包问题中,求最少元素个数的情况。

这篇关于LeetCode算法题解(动态规划)|LeetCode322. 零钱兑换、LeetCode279. 完全平方数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/423795

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费