LeetCode算法题解(动态规划)|LeetCode322. 零钱兑换、LeetCode279. 完全平方数

本文主要是介绍LeetCode算法题解(动态规划)|LeetCode322. 零钱兑换、LeetCode279. 完全平方数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、LeetCode322. 零钱兑换

题目链接:322. 零钱兑换
题目描述:

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 231 - 1
  • 0 <= amount <= 104
算法分析:

题目给出硬币的数量无限,所以这是一道完全背包问题。

定义dp数组及下标含义:

dp[j]表示凑成金额为j所需的硬币最少个数。

递推公式:

dp[j]=min(dp[j],dp[j-coins[i]]+1),现有硬币coins[i],那么凑成金额为j所需的最少硬币数可有凑成金额为j-coins[i]所需最少硬币数推出。

初始化:

因为要求的是最少硬币数,所以除dp[0]初始化成0之外,其他所有情况都要初始化成最大值。

遍历顺序:

先遍历不同面额的硬币,在遍历总金额。

打印dp数组进行验证。

代码如下:

class Solution {public int coinChange(int[] coins, int amount) {int[] dp = new int[amount + 1];for(int i = 1; i < amount + 1; i++) dp[i] = Integer.MAX_VALUE;dp[0] = 0;//除了dp[0]其他都初始化成最大值for(int i = 0; i < coins.length; i++) {//遍历每种硬币for(int j = coins[i]; j <= amount; j++) {//遍历总金额if(dp[j - coins[i]] != Integer.MAX_VALUE) {//注意如果dp[j-coins[i]]是个最大int类型整数的话,dp[j-coins[i]]+1会溢出,变成负数,从而影响比较结果,所以只有它不是初始最大值是,才有选择的必要。dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}}return dp[amount] == Integer.MAX_VALUE ? -1 : dp[amount];}
}

二、LeetCode279. 完全平方数

题目链接:279. 完全平方数
题目描述:

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

 

提示:

  • 1 <= n <= 104
算法分析:

因为每个完全平方数可以无限取,所以这也是一道完全背包问题。

定义dp数组及下标含义:

dp[j]表示组成和为j的完全平方数最少数量。

递推公式:

dp[j]=min(dp[j],dp[j-i*i]+1),现有完全平方数i*i,那么组成j的最少完全平方数数量可有dp[j-i*i]推导而出,也即组成j-i*i的最少完全平方数数量加上现在这个完全平方数(i*i)。

初始化:

因为要求的是完全平方数最少数量,所以除dp[0]初始化成0外,其他所有情况都要初始化成最大值。

遍历顺序:

先遍历小于等于目标和n的每个完全平方数,在遍历总和。

打印dp数组进行验证。

代码如下:

class Solution {public int numSquares(int n) {int[] dp = new int[n + 1];//除dp[0]意外,其他所有情况都初始化成最大值dp[0] = 0;for(int i = 1; i <= n; i++)dp[i] = Integer.MAX_VALUE;for(int i = 1; i * i <= n; i++) {//遍历每个完全平方数for(int j = i * i; j <= n; j++) {//遍历总和dp[j] = Math.min(dp[j],dp[j-i * i] + 1);}}return dp[n];}
}

总结

这两道题都是完全背包问题中,求最少元素个数的情况。

这篇关于LeetCode算法题解(动态规划)|LeetCode322. 零钱兑换、LeetCode279. 完全平方数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/423795

相关文章

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Linux find 命令完全指南及核心用法

《Linuxfind命令完全指南及核心用法》find是Linux系统最强大的文件搜索工具,支持嵌套遍历、条件筛选、执行动作,下面给大家介绍Linuxfind命令完全指南,感兴趣的朋友一起看看吧... 目录一、基础搜索模式1. 按文件名搜索(精确/模糊匹配)2. 排除指定目录/文件二、根据文件类型筛选三、时间

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

JavaScript中的Map用法完全指南

《JavaScript中的Map用法完全指南》:本文主要介绍JavaScript中Map用法的相关资料,通过实例讲解了Map的创建、常用方法和迭代方式,还探讨了Map与对象的区别,并通过一个例子展... 目录引言1. 创建 Map2. Map 和对象的对比3. Map 的常用方法3.1 set(key, v

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...