详细解答T-SNE程序中from sklearn.manifold import TSNE的数据设置,包括输入数据,绘制颜色的参数设置,代码复制可用!!

本文主要是介绍详细解答T-SNE程序中from sklearn.manifold import TSNE的数据设置,包括输入数据,绘制颜色的参数设置,代码复制可用!!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

  • 前言——TSNE是t-Distributed Stochastic Neighbor Embedding的缩写
  • 1、可运行的T-SNE程序
  • 2. 实验结果
  • 3、针对上述程序我们详细分析T-SNE的使用方法
    • 3.1 加载数据
    • 3.2 TSNE降维
    • 3.3 绘制点
    • 3.4 关于颜色设置,颜色使用的标签数据的说明c=y
  • 总结


前言——TSNE是t-Distributed Stochastic Neighbor Embedding的缩写

TSNE是t-Distributed Stochastic Neighbor Embedding的缩写,它是一个非线性降维算法。

TSNE的主要作用和优点如下:

  • 高维数据投影到低维空间,如二维或三维,实现高维数据的可视化。

  • 相比其他降维方法如PCA,TSNE在保留局部结构信息上的效果更好,尤其适用于高维稠密数据。

  • 它可以很好地区分数据中的簇结构,有利于观察不同类别或类型的数据分布情况

1、可运行的T-SNE程序

from sklearn.datasets import load_iris
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')# 加载数据
iris = load_iris()
X = iris.data
y = iris.target# TSNE降维
tsne = TSNE(n_components=2, random_state=0)
X_tsne = tsne.fit_transform(X)# 绘制点
plt.scatter(X_tsne[:,0], X_tsne[:,1], c=y, marker='o', s=5)# 添加图例
plt.legend(iris.target_names)# 添加标题
plt.title("TSNE projection of the Iris dataset")plt.show()

2. 实验结果

在这里插入图片描述

3、针对上述程序我们详细分析T-SNE的使用方法

3.1 加载数据

  • load_iris()函数从sklearn.datasets模块加载鸢尾花数据集,
  • iris包含数据集的特征数据X标签数据y

3.2 TSNE降维

  • TSNE是一种非线性降维算法,用于高维数据的可视化。它可以将高维数据投影到二维或三维空间。

  • TSNE(n_components=2)实例化一个TSNE模型,降维后的维度数设为2

  • random_state=0固定随机数种子,使得结果可重复

  • fit_transform(X)对特征数据X进行降维,返回降维后的新特征X_tsne。

3.3 绘制点

  • X_tsne包含每个样本的二维坐标

  • plt.scatter以(x,y)坐标方式绘制每个点,c=y指定点的颜色

  • marker='o’设置点的形状为圆形

  • s=5控制点的大小

通过TSNE降维,高维数据X被投影到二维空间,得到低维表示X_tsne。然后根据X_tsne和y进行散点图绘制,就可以实现TSNE降维结果的可视化。这是TSNE的标准流程。

3.4 关于颜色设置,颜色使用的标签数据的说明c=y

c=y这行代码的含义和作用是:

  • c参数用于设置散点图中每个点的颜色。

  • y变量包含了样本的类别标签信息。对于鸢尾花数据集来说,y取值为0、1或2,分别表示三种花的类别

  • 当我们设置c=y时,就是根据每个样本在y中的类别标签值,来动态设置这个样本点在散点图中的颜色

  • 具体来说:

    • 如果一个样本的y值为0,那么这个点的颜色就会取颜色映射中的第一个颜色。

    • 如果y值为1,点颜色取第二个颜色。

    • 如果y值为2,点颜色取第三个颜色。

  • 这样每个类别的样本点就会使用不同的颜色来绘制,从而在可视化结果中清晰区分开各个类别。


总结

  • 在科研中,TSNE广泛应用于图像分类、自然语言处理等领域的数据降维和可视化。

  • 比如对神经网络分类结果进行TSNE降维,可以观察不同类别样本在特征空间中的分布,有助于分析模型表现。

  • 对文本语料进行TSNE降维,可以观察词汇在语义空间中的分布,帮助理解语义结构。

  • 对单细胞RNA-seq数据进行TSNE降维,可以观察不同类型细胞在表达空间中的分布,有助于发现新型细胞亚群。

所以总体来说,TSNE通过高效的降维和保留局部结构,有助于科研人员直观观察高维数据的内在结构,分析模型效果,发现数据中的新知识,从而推动科研工作的进展。它为数据可视化和理解提供了重要的工具支持。

这篇关于详细解答T-SNE程序中from sklearn.manifold import TSNE的数据设置,包括输入数据,绘制颜色的参数设置,代码复制可用!!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/422485

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来