(动手学习深度学习)第13章 实战kaggle竞赛:狗的品种识别

2023-11-24 15:15

本文主要是介绍(动手学习深度学习)第13章 实战kaggle竞赛:狗的品种识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 1. 导入相关库
      • 2. 加载数据集
      • 3. 整理数据集
      • 4. 图像增广
      • 5. 读取数据
      • 6. 微调预训练模型
      • 7. 定义损失函数和评价损失函数
      • 9. 训练模型

1. 导入相关库

import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

2. 加载数据集

- 该数据集是完整数据集的小规模样本
# 下载数据集
d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip','0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d')# 如果使用Kaggle比赛的完整数据集,请将下面的变量更改为False
demo = True
if demo:data_dir = d2l.download_extract('dog_tiny')
else:data_dir = os.path.join('..', 'data', 'dog-breed-identification')

3. 整理数据集

def reorg_dog_data(data_dir, valid_ratio):labels = d2l.read_csv_labels(os.path.join(data_dir, 'labels.csv'))d2l.reorg_train_valid(data_dir, labels, valid_ratio)d2l.reorg_test(data_dir)batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_dog_data(data_dir, valid_ratio)

4. 图像增广

transform_train = torchvision.transforms.Compose([torchvision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0), ratio=(3.0/4.0,4.0/3.0)),torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
transform_test = torchvision.transforms.Compose([torchvision.transforms.Resize(256),torchvision.transforms.CenterCrop(224),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

5. 读取数据

train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train_valid_test', folder),transform=transform_train) for folder in ['train', 'train_valid']
]
valid_ds, test_ds = [torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train_valid_test', folder),transform=transform_test) for folder in ['valid', 'test']
]
train_iter, train_valid_iter = [torch.utils.data.DataLoader(dataset, batch_size, shuffle=True, drop_last=True) for dataset in (train_ds, train_valid_ds)
]
valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False, drop_last=True
)
test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False, drop_last=True
)

6. 微调预训练模型

def get_net(devices):finetune_net = nn.Sequential()finetune_net.features = torchvision.models.resnet34(weights=torchvision.models.ResNet34_Weights.IMAGENET1K_V1)# 定义一个新的输出网络,共有120个输出类别finetune_net.output_new = nn.Sequential(nn.Linear(1000, 256),nn.ReLU(),nn.Linear(256, 120))finetune_net = finetune_net.to(devices[0])# 冻结参数for param in finetune_net.features.parameters():param.requires_grad = Falsereturn finetune_net
# 查看网络模型
get_net(devices=d2l.try_all_gpus())

在这里插入图片描述

7. 定义损失函数和评价损失函数

# 定义损失函数
loss = nn.CrossEntropyLoss(reduction='none')def evaluate_loss(data_iter, net, device):l_sum, n = 0.0, 0for features, labels in data_iter:features, labels = features.to(device[0]), labels.to(device[0])outputs = net(features)l = loss(outputs, labels)l_sum += l.sum()n += labels.numel()return (l_sum / n).to('cpu')
  1. 定义训练函数
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay):# 只训练小型定义输出网络net = nn.DataParallel(net, device_ids=devices).to(devices[0])trainer = torch.optim.SGD((param for param in net.parameters() if param.requires_grad),lr=lr, momentum=0.9, weight_decay=wd)scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)num_batches, timer = len(train_iter), d2l.Timer()legend = ['train loss']if valid_iter is not None:legend.append('valid loss')animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=legend)for epoch in range(num_epochs):metric = d2l.Accumulator(2)for i, (features, labels) in enumerate(train_iter):timer.start()features, labels = features.to(devices[0]), labels.to(devices[0])trainer.zero_grad()output = net(features)l = loss(output, labels).sum()l.backward()trainer.step()metric.add(l, labels.shape[0])timer.stop()if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches, (metric[0] / metric[1], None))measures = f'train loss {metric[0] / metric[1]:.3f}'if valid_iter is not None :valid_loss = evaluate_loss(valid_iter, net, devices)animator.add(epoch + 1, (None, valid_loss.detach().cpu()))scheduler.step()if valid_iter is not None:measures += f', valid loss {valid_loss:.3f}'print(measures + f'\n{metric[1] * num_epochs / timer.sum():.1f}'f'examples/sec on {str(devices)}')

9. 训练模型

devices, num_epochs, lr, wd = d2l.try_all_gpus(), 10, 1e-4, 1e-4
lr_period, lr_decay, net, = 2, 0.9, get_net(devices)
import time# 在开头设置开始时间
start = time.perf_counter()  # start = time.clock() python3.8之前可以train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay)# 在程序运行结束的位置添加结束时间
end = time.perf_counter()  # end = time.clock()  python3.8之前可以# 再将其进行打印,即可显示出程序完成的运行耗时
print(f'运行耗时{(end-start):.4f}')

在这里插入图片描述

这篇关于(动手学习深度学习)第13章 实战kaggle竞赛:狗的品种识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/422148

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree