(动手学习深度学习)第13章 实战kaggle竞赛:狗的品种识别

2023-11-24 15:15

本文主要是介绍(动手学习深度学习)第13章 实战kaggle竞赛:狗的品种识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 1. 导入相关库
      • 2. 加载数据集
      • 3. 整理数据集
      • 4. 图像增广
      • 5. 读取数据
      • 6. 微调预训练模型
      • 7. 定义损失函数和评价损失函数
      • 9. 训练模型

1. 导入相关库

import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

2. 加载数据集

- 该数据集是完整数据集的小规模样本
# 下载数据集
d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip','0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d')# 如果使用Kaggle比赛的完整数据集,请将下面的变量更改为False
demo = True
if demo:data_dir = d2l.download_extract('dog_tiny')
else:data_dir = os.path.join('..', 'data', 'dog-breed-identification')

3. 整理数据集

def reorg_dog_data(data_dir, valid_ratio):labels = d2l.read_csv_labels(os.path.join(data_dir, 'labels.csv'))d2l.reorg_train_valid(data_dir, labels, valid_ratio)d2l.reorg_test(data_dir)batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_dog_data(data_dir, valid_ratio)

4. 图像增广

transform_train = torchvision.transforms.Compose([torchvision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0), ratio=(3.0/4.0,4.0/3.0)),torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
transform_test = torchvision.transforms.Compose([torchvision.transforms.Resize(256),torchvision.transforms.CenterCrop(224),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

5. 读取数据

train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train_valid_test', folder),transform=transform_train) for folder in ['train', 'train_valid']
]
valid_ds, test_ds = [torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train_valid_test', folder),transform=transform_test) for folder in ['valid', 'test']
]
train_iter, train_valid_iter = [torch.utils.data.DataLoader(dataset, batch_size, shuffle=True, drop_last=True) for dataset in (train_ds, train_valid_ds)
]
valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False, drop_last=True
)
test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False, drop_last=True
)

6. 微调预训练模型

def get_net(devices):finetune_net = nn.Sequential()finetune_net.features = torchvision.models.resnet34(weights=torchvision.models.ResNet34_Weights.IMAGENET1K_V1)# 定义一个新的输出网络,共有120个输出类别finetune_net.output_new = nn.Sequential(nn.Linear(1000, 256),nn.ReLU(),nn.Linear(256, 120))finetune_net = finetune_net.to(devices[0])# 冻结参数for param in finetune_net.features.parameters():param.requires_grad = Falsereturn finetune_net
# 查看网络模型
get_net(devices=d2l.try_all_gpus())

在这里插入图片描述

7. 定义损失函数和评价损失函数

# 定义损失函数
loss = nn.CrossEntropyLoss(reduction='none')def evaluate_loss(data_iter, net, device):l_sum, n = 0.0, 0for features, labels in data_iter:features, labels = features.to(device[0]), labels.to(device[0])outputs = net(features)l = loss(outputs, labels)l_sum += l.sum()n += labels.numel()return (l_sum / n).to('cpu')
  1. 定义训练函数
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay):# 只训练小型定义输出网络net = nn.DataParallel(net, device_ids=devices).to(devices[0])trainer = torch.optim.SGD((param for param in net.parameters() if param.requires_grad),lr=lr, momentum=0.9, weight_decay=wd)scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)num_batches, timer = len(train_iter), d2l.Timer()legend = ['train loss']if valid_iter is not None:legend.append('valid loss')animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=legend)for epoch in range(num_epochs):metric = d2l.Accumulator(2)for i, (features, labels) in enumerate(train_iter):timer.start()features, labels = features.to(devices[0]), labels.to(devices[0])trainer.zero_grad()output = net(features)l = loss(output, labels).sum()l.backward()trainer.step()metric.add(l, labels.shape[0])timer.stop()if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches, (metric[0] / metric[1], None))measures = f'train loss {metric[0] / metric[1]:.3f}'if valid_iter is not None :valid_loss = evaluate_loss(valid_iter, net, devices)animator.add(epoch + 1, (None, valid_loss.detach().cpu()))scheduler.step()if valid_iter is not None:measures += f', valid loss {valid_loss:.3f}'print(measures + f'\n{metric[1] * num_epochs / timer.sum():.1f}'f'examples/sec on {str(devices)}')

9. 训练模型

devices, num_epochs, lr, wd = d2l.try_all_gpus(), 10, 1e-4, 1e-4
lr_period, lr_decay, net, = 2, 0.9, get_net(devices)
import time# 在开头设置开始时间
start = time.perf_counter()  # start = time.clock() python3.8之前可以train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay)# 在程序运行结束的位置添加结束时间
end = time.perf_counter()  # end = time.clock()  python3.8之前可以# 再将其进行打印,即可显示出程序完成的运行耗时
print(f'运行耗时{(end-start):.4f}')

在这里插入图片描述

这篇关于(动手学习深度学习)第13章 实战kaggle竞赛:狗的品种识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/422148

相关文章

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推