Matlab KPCA-ISSA-SVM基于核主成分分析和改进麻雀搜索算法优化支持向量机的分类组合预测

本文主要是介绍Matlab KPCA-ISSA-SVM基于核主成分分析和改进麻雀搜索算法优化支持向量机的分类组合预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

在机器学习领域中,支持向量机(Support Vector Machine,SVM)是一种常用的分类算法。它通过在特征空间中构建一个最优超平面,将不同类别的样本分开。然而,传统的SVM算法在处理高维数据时存在一些问题,例如计算复杂度高、模型泛化能力差等。

为了解决这些问题,研究人员提出了一种基于核主成分(Kernel Principal Component Analysis,KPCA)和自适应麻雀算法(Improved Social Spider Algorithm,ISSA)优化的支持向量机分类算法(KPCA-ISSA-SVM)。这种算法结合了KPCA的降维能力和ISSA的全局搜索能力,能够有效地处理高维数据,并提高模型的分类性能。

首先,KPCA是一种非线性降维方法,它通过将原始数据映射到高维特征空间中,利用核函数计算样本之间的相似性。然后,通过计算样本在特征空间中的主成分,可以得到一组新的低维特征,从而减少数据的维度。这样做的好处是可以保留更多的数据信息,提高模型的分类性能。

其次,ISSA是一种基于自然界中蜘蛛行为的优化算法。它模拟了蜘蛛在捕食过程中的搜索行为,通过不断地调整蜘蛛的位置和速度,以找到最优解。在KPCA-ISSA-SVM算法中,ISSA被用来优化支持向量机的超参数,例如惩罚系数和核函数参数。通过使用ISSA进行全局搜索,可以得到更好的模型参数,从而提高模型的泛化能力。

最后,KPCA-ISSA-SVM算法的实现步骤如下:

  1. 对原始数据进行KPCA降维,得到新的特征矩阵。

  2. 初始化ISSA算法的参数,包括蜘蛛的初始位置和速度。

  3. 使用ISSA算法对支持向量机的超参数进行优化,得到最优参数。

  4. 使用最优参数训练支持向量机模型。

  5. 对测试数据进行预测,并评估模型的分类性能。

通过实验证明,KPCA-ISSA-SVM算法在处理高维数据时具有较好的性能。与传统的SVM算法相比,它能够更好地处理非线性问题,并提高模型的分类准确率。此外,KPCA-ISSA-SVM算法还具有较好的鲁棒性和泛化能力,适用于各种复杂的分类任务。

总结起来,KPCA-ISSA-SVM算法是一种基于核主成分和自适应麻雀算法优化的支持向量机分类算法。它通过降维和全局搜索的方式,提高了SVM算法在处理高维数据时的性能。未来,我们可以进一步研究和改进这种算法,以应对更复杂的分类问题。

📣 部分代码

%___________________________________________________________________%%  Grey Wolf Optimizer (GWO) source codes version 1.0               %%                                                                   %%  Developed in MATLAB R2011b(7.13)                                 %%                                                                   %%  Author and programmer: Seyedali Mirjalili                        %%                                                                   %%         e-Mail: ali.mirjalili@gmail.com                           %%                 seyedali.mirjalili@griffithuni.edu.au             %%                                                                   %%       Homepage: http://www.alimirjalili.com                       %%                                                                   %%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %%               Grey Wolf Optimizer, Advances in Engineering        %%               Software , in press,                                %%               DOI: 10.1016/j.advengsoft.2013.12.007               %%                                                                   %%___________________________________________________________________%% This function initialize the first population of search agentsfunction Positions=initialization(SearchAgents_no,dim,ub,lb)Boundary_no= size(ub,2); % numnber of boundaries% If the boundaries of all variables are equal and user enter a signle% number for both ub and lbif Boundary_no==1    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;end% If each variable has a different lb and ubif Boundary_no>1    for i=1:dim        ub_i=ub(i);        lb_i=lb(i);        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;    endend

⛳️ 运行结果

🔗 参考文献

[1] 迟翕幻.决策树多元分类模型预测森林植被覆盖[J].电子制作, 2017(24):2.DOI:CNKI:SUN:DZZZ.0.2017-24-012.

[2] 倪网东.新型多元校正、校正转换和多元分类分析方法研究[D].中南大学,2010.DOI:10.7666/d.y1721849.

[3] 王忆之.基于支持向量机的冷水机组故障检测与诊断优化研究[J].[2023-09-18].

[4] 彭令,牛瑞卿,赵艳南,等.基于核主成分分析和粒子群优化支持向量机的滑坡位移预测[J].武汉大学学报:信息科学版, 2013(2):6.DOI:CNKI:SUN:WHCH.0.2013-02-006.

[5] 潘石柱,殳伟群,王令群.基于支持向量机和核主成分分析的车牌字符识别[J].电子科技, 2006(10):4.DOI:10.3969/j.issn.1007-7820.2006.10.016.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于Matlab KPCA-ISSA-SVM基于核主成分分析和改进麻雀搜索算法优化支持向量机的分类组合预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/418169

相关文章

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO