【论文整理】基于图神经网络的序列推荐模型整理Graph Neural Networks for Recommender Systems: Challenges, Methods, and Direct

本文主要是介绍【论文整理】基于图神经网络的序列推荐模型整理Graph Neural Networks for Recommender Systems: Challenges, Methods, and Direct,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

序列推荐发展历程

在这里插入图片描述
对于序列推荐,为了提高推荐性能,需要从序列中提取尽可能多的有效信息,并了解用户在序列中的兴趣,包括短期兴趣、长期兴趣、动态兴趣等,以便准确预测用户可能感兴趣的下一个项目。已经使用了一些序列建模工具,如马尔可夫链或递归神经网络GNN。对于图神经网络,通过将数据转换为图,它可以很好地用于短期、动态的兴趣建模或表示学习。使用GNN进行序列建模的一般模式。
SURGE将每个用户的序列转换为项目-项目图,并通过度量学习自适应地学习边的权重,动态图池只保留较强的边。保留的图形通过位置展平转换为序列,并最终用于预测下一个项目。
MA-GNN考虑序列中的短期兴趣建模,以构建项目-项目图。对于每个项目,它只会在序列中构建与其他项目接近的边。这使它能够在仍然通过其他网络学习长期用户兴趣。将学习到的多个表示融合在一起并用于最终推荐。
由于GNN具有通过聚集相邻节点的信息进行高阶关系建模的能力,因此在将多个序列融合到一个图中后,它可以学习不同序列中用户和项目的表示,这是马尔可夫模型或递归神经网络所无法完成的。Wang等人[ Knowledge-enhanced graph neural networks for sequential recommendation.]提出了一种简单的方法,将序列信息直接转换为图上的有向边,然后使用GNN学习表示。
ISSR模型同时构建了用户项目二部图和项目项目图,其中项目项目图的边表示序列中的共现,边权重根据出现的次数分配。GNN学习到的表示通过递归神经网络用于最终推荐。与直接将时间序列转换为图中的有向边不同,DGSR和TGSRec在构建图的过程中考虑了序列中的时间戳。在图中,每条边表示用户和项目之间的交互,并具有相应的时间属性。然后对时态图执行卷积运算,以了解用户和项目的表示。GES-SASRec和SGRec专注于项目表征的学习。
对于序列中的一个项目,GES-SASRec考虑其他序列中该项目的下一个项目,SGRec不仅考虑下一个项目,还考虑上一个项目。通过将目标项目前后的项目按不同的顺序聚合,增强了项目的表示。GPR和GME通过考虑连续出现的频率或相同序列中出现的频率来构建项目之间的边,以增强表示。
有些作品更复杂。例如,RetaGNN在构建图表时考虑了项目的属性,而STP-UDGAT在POI建议中考虑了地理位置、时间戳和频率。

各模型细节

在这里插入图片描述

这篇关于【论文整理】基于图神经网络的序列推荐模型整理Graph Neural Networks for Recommender Systems: Challenges, Methods, and Direct的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/403069

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

查看Oracle数据库中UNDO表空间的使用情况(最新推荐)

《查看Oracle数据库中UNDO表空间的使用情况(最新推荐)》Oracle数据库中查看UNDO表空间使用情况的4种方法:DBA_TABLESPACES和DBA_DATA_FILES提供基本信息,V$... 目录1. 通过 DBjavascriptA_TABLESPACES 和 DBA_DATA_FILES

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

Mysql中InnoDB与MyISAM索引差异详解(最新整理)

《Mysql中InnoDB与MyISAM索引差异详解(最新整理)》InnoDB和MyISAM在索引实现和特性上有差异,包括聚集索引、非聚集索引、事务支持、并发控制、覆盖索引、主键约束、外键支持和物理存... 目录1. 索引类型与数据存储方式InnoDBMyISAM2. 事务与并发控制InnoDBMyISAM

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

StarRocks索引详解(最新整理)

《StarRocks索引详解(最新整理)》StarRocks支持多种索引类型,包括主键索引、前缀索引、Bitmap索引和Bloomfilter索引,这些索引类型适用于不同场景,如唯一性约束、减少索引空... 目录1. 主键索引(Primary Key Index)2. 前缀索引(Prefix Index /