VINS-Mono-后端优化 (二:预积分残差雅可比推导)

2023-11-12 01:15

本文主要是介绍VINS-Mono-后端优化 (二:预积分残差雅可比推导),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


这里是求预积分对约束的参数块进行求导,有这个雅可比矩阵才能进行优化步长的计算,这个是预积分这个约束因子对各个优化变量的求导,后面还有相机的观测

残差块中的 θ \theta θ 是3维的,但是参数块中的四元数是4维的,因为相减后残差只剩虚部了,但是参数是从4个参数变过来的

预积分的残差具体如下,总共有15维的自由度,即y有15维
在这里插入图片描述
而参数块 x x x , 维护的是 k k k k + 1 k+1 k+1 时刻的 P , Q , V , B a , B g P,Q,V,Ba,Bg P,Q,V,Ba,Bg
P是3维,Q是四元数有4维,因为是过参数化的形式,而 V , B a , B g V,Ba,Bg V,Ba,Bg 总共是9维的参数块
所以整个参数块 x x x 的大小为 7+9

残差对残差参数块的求导
[ ∂ e ∂ P k ∂ e ∂ V k ∂ e ∂ P k + 1 ∂ e ∂ V k + 1 ∂ e 1 ∂ P k ∂ e 1 ∂ V k ∂ e 1 ∂ P k + 1 ∂ e 1 ∂ V k + 1 ⋮ ] \begin{bmatrix} \frac{\partial e}{\partial P_{k}} &\frac{\partial e}{\partial V_{k}}&\frac{\partial e}{\partial P_{k+1}}&\frac{\partial e}{\partial V_{k+1}}\\ \frac{\partial e_{1}}{\partial P_{k}} &\frac{\partial e_{1}}{\partial V_{k}}&\frac{\partial e_{1}}{\partial P_{k+1}}&\frac{\partial e_{1}}{\partial V_{k+1}}\\ \vdots \end{bmatrix} PkePke1VkeVke1Pk+1ePk+1e1Vk+1eVk+1e1
这个矩阵有15行,因为误差矩阵 e e e 是15维的(残差分别是 α , β , θ , B a , B g 构成,各自都是 3 个维度 \alpha,\beta,\theta,B_{a},B_{g}构成,各自都是3个维度 α,β,θ,Ba,Bg构成,各自都是3个维度),参数块 P P P 是7维,参数块 V V V 是9维
所以把这个雅可比矩阵分块成了 15 × 7 15×7 15×7 15 × 9 15×9 15×9 15 × 7 15×7 15×7 15 × 9 15×9 15×9 的形式
误差矩阵的维度和参数是不同的,求导就是对构成这个误差函数的里面的全部变量进行求导

由于我们维护的是 R w c R_{wc} Rwc ,所以我们的扰动是右乘的,十四讲里面维护的是 R c w R_{cw} Rcw 所以才使用左乘

对这个误差矩阵进行求导的时候,也可以按照误差参数块进行分别求导的,15=3*5,前三行雅可比使用位移的函数对 P k , V k , P k + 1 , V k + 1 P_{k},V_{k},P_{k+1},V_{k+1} Pk,Vk,Pk+1,Vk+1 进行求导

对位置 δ α \delta\alpha δα 进行求导

以下示例都是对 k k k 时刻的状态量进行求导, k + 1 k+1 k+1 时刻的同理
使用 δ α b k + 1 b k = … \delta\alpha^{b_{k}}_{b_{k+1}}=\dots δαbk+1bk= 分别对 P , Q , V , B a , B g P,Q,V,Ba,Bg P,Q,V,Ba,Bg 进行求导

位置误差 δ α \delta\alpha δα 对平移 P b k w P^{w}_{b_{k}} Pbkw 的求导

代码中的 Q i Q_{i} Qi R b k w R^{w}_{b_{k}} Rbkw ,所以代码中要取逆

∂ δ α b k + 1 b k ∂ P b k w = − R w b k \frac{\partial\delta\alpha^{b_{k}}_{b_{k+1}}}{\partial P^{w}_{b_{k}}}=-R^{b_{k}}_{w} Pbkwδαbk+1bk=Rwbk

位置 δ α \delta\alpha δα 对旋转 R w b k R^{b_{k}}_{w} Rwbk 进行求导

接下来是对旋转 R w b k R^{b_{k}}_{w} Rwbk 进行求导,由于代码中维护的是 R b k w R^{w}_{b_{k}} Rbkw ,所以这里的公式推导要取逆,方便代码的维护,这样是一个旋转方向的问题,如果直接左乘的话旋转方向就是反过来的了,这样操作的话旋转方向就是按照代码中维护的量的方向来进行操作

后面一串相乘后就是一个向量,当作向量 a a a
∂ δ α b k + 1 b k ∂ R w b k = l i m ϕ → 0 ( R b k w e x p ( ϕ ∧ ) ) − 1 ⋅ a − R w b k ⋅ a ϕ \frac{\partial\delta\alpha^{b_{k}}_{b_{k+1}}}{\partial R^{b_{k}}_{w}}=lim_{\phi\rightarrow0}\frac{(R^{w}_{b_{k}}exp(\phi^{\wedge}))^{-1}·a-R^{b_{k}}_{w}·a}{\phi} Rwbkδαbk+1bk=limϕ0ϕ(Rbkwexp(ϕ))1aRwbka

有公式 ( A ⋅ B ) − 1 = B − 1 ⋅ A − 1 (A·B)^{-1}=B^{-1}·A^{-1} (AB)1=B1A1
对旋转向量 ϕ \phi ϕ 取逆,相当于是换了一个旋转方向,所以 ϕ − 1 = − ϕ \phi^{-1}=-\phi ϕ1=ϕ
= ( I − ϕ ∧ ) R w b k ⋅ a − R w b k ⋅ a =(I-\phi^{\wedge})R^{b_{k}}_{w}·a-R^{b_{k}}_{w}·a =(Iϕ)RwbkaRwbka
= − ϕ ∧ ⋅ R w b k ⋅ a =-\phi^{\wedge}·R^{b_{k}}_{w}·a =ϕRwbka

叉乘有一个性质, a ⃗ × b ⃗ = − b ⃗ × a ⃗ \vec{a}×\vec{b}=-\vec{b}×\vec{a} a ×b =b ×a
a ⃗ × b ⃗ = a ∧ ⋅ b \vec{a}×\vec{b}=a^{\wedge}·b a ×b =ab
− b ⃗ × a ⃗ = − b ∧ ⋅ a -\vec{b}×\vec{a}=-b^{\wedge}·a b ×a =ba
a ∧ ⋅ b = − b ∧ ⋅ a a^{\wedge}·b=-b^{\wedge}·a ab=ba

则上面有
= ( R w b k ⋅ a ) ∧ ⋅ ϕ =(R^{b_{k}}_{w}·a)^{\wedge}·\phi =(Rwbka)ϕ

然后约掉分母上的 ϕ \phi ϕ
∂ δ α b k + 1 b k ∂ R w b k = ( R w b k ⋅ a ) ∧ \frac{\partial\delta\alpha^{b_{k}}_{b_{k+1}}}{\partial R^{b_{k}}_{w}}=(R^{b_{k}}_{w}·a)^{\wedge} Rwbkδαbk+1bk=(Rwbka)

对速度 δ β \delta\beta δβ 进行求导

也是使用 δ β b k + 1 b k = … \delta\beta^{b_{k}}_{b_{k+1}}=\dots δβbk+1bk= 分别对 P , Q , V , B a , B w P,Q,V,Ba,Bw P,Q,V,Ba,Bw 进行求导

速度 δ β \delta\beta δβ 对位置 P b k w P^{w}_{b_{k}} Pbkw 求导

由于公式里面不含位置,所以这块导数 = 0

速度 δ β \delta\beta δβ 对旋转 R w b k R^{b_{k}}_{w} Rwbk 求导

整体公式结构和上面的位移对旋转求导一致,所以求导结果也是 ( R w b k ⋅ a ) ∧ (R^{b_{k}}_{w}·a)^{\wedge} (Rwbka)

对旋转 δ θ \delta\theta δθ 进行求导

分别对 P , Q , V , B a , B g P,Q,V,Ba,Bg P,Q,V,Ba,Bg 进行求导

由于公式中不包含平移和速度量,所以对应的雅可比也为0
δ θ = 2 ⋅ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w \delta\theta=2·(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} δθ=2(γbk+1bk)1(qbkw)1qbk+1w
k对应代码中的 i ,k+1对应代码中的 j

旋转 δ θ \delta\theta δθ q b k w q^{w}_{b_{k}} qbkw 进行求导

就是在右边加一个扰动,扰动为 [ 1 θ 2 ] T [1 \ \frac{\theta}{2}]^{T} [1 2θ]T
∂ δ θ ∂ q b k w = ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ⊗ [ 1 θ 2 ] ) − 1 ⊗ q b k + 1 w − ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w θ \frac{\partial \delta\theta}{\partial q^{w}_{b_{k}}}=\frac{(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}}\otimes\begin{bmatrix}1\\\frac{\theta}{2} \end{bmatrix})^{-1}\otimes q^{w}_{b_{k+1}}-(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}}}{\theta} qbkwδθ=θ(γbk+1bk)1(qbkw[12θ])1qbk+1w(γbk+1bk)1(qbkw)1qbk+1w

把逆乘进去,对于扰动那里其实就是把虚部 n ⃗ \vec n n 变一个旋转方向,所以是取个负号
= ( γ b k + 1 b k ) − 1 ⊗ [ 1 − θ 2 ] ⊗ q b k w − 1 ⊗ q b k + 1 w − ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w =(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes\begin{bmatrix}1\\-\frac{\theta}{2} \end{bmatrix}\otimes q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}-(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} =(γbk+1bk)1[12θ]qbkw1qbk+1w(γbk+1bk)1(qbkw)1qbk+1w

这里会用一个四元数的性质
a ⊗ b = [ a ] L ⋅ b = [ b ] R ⋅ a a\otimes b=[a]_{L}·b=[b]_{R}·a ab=[a]Lb=[b]Ra
具体看这篇文章讲解VINS-Mono-IMU预积分 (二:连续时间的PVQ积分+四元数求导)

公式变成
= 2 [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ 1 − θ 2 ] ] − [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ 1 0 ⋮ ] ] =2[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·\begin{bmatrix}[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}·\begin{bmatrix}1\\-\frac{\theta}{2} \end{bmatrix}\end{bmatrix}-[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·\begin{bmatrix}[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}·\begin{bmatrix}1\\ 0 \\\vdots \end{bmatrix}\end{bmatrix} =2[qbkw1qbk+1w]R[[(γbk+1bk)1]L[12θ]][qbkw1qbk+1w]R [(γbk+1bk)1]L 10
= 2 [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ [ 1 − θ 2 ] − [ 1 0 ⋮ ] ] =2[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}·\begin{bmatrix} \begin{bmatrix}1\\-\frac{\theta}{2} \end{bmatrix} - \begin{bmatrix}1\\ 0 \\\vdots \end{bmatrix}\end{bmatrix} =2[qbkw1qbk+1w]R[(γbk+1bk)1]L [12θ] 10
= [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ 0 − θ ] x y z θ =\frac{[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}· \begin{bmatrix}0\\-\theta \end{bmatrix}_{xyz}}{\theta} =θ[qbkw1qbk+1w]R[(γbk+1bk)1]L[0θ]xyz

θ \theta θ 约掉

= − [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L =-[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L} =[qbkw1qbk+1w]R[(γbk+1bk)1]L

这里乘完后的结果只有四元数的虚部 x y z xyz xyz
所以把四元数进行矩阵化的公式会有点变动
原本的
[ q ] L = q w ⋅ I + [ 0 − q T q q × ] [q]_{L}=q_{w}·I+\begin{bmatrix}0&-q^{T}\\q&q_{×} \end{bmatrix} [q]L=qwI+[0qqTq×]
[ q ] R = q w ⋅ I + [ 0 − q T q − q × ] [q]_{R}=q_{w}·I+\begin{bmatrix}0&-q^{T}\\q&-q_{×} \end{bmatrix} [q]R=qwI+[0qqTq×]
当只取虚部的时候
[ q ] L = q w ⋅ I + q × [q]_{L}=q_{w}·I+q_{×} [q]L=qwI+q×
[ q ] R = q w ⋅ I − q × [q]_{R}=q_{w}·I-q_{×} [q]R=qwIq×

对于一个四元数取逆的时候
q = [ c o s θ 2 n ⃗ ⋅ s i n θ 2 ] q=\begin{bmatrix}cos\frac{\theta}{2}\\\vec n·sin\frac{\theta}{2}\end{bmatrix} q=[cos2θn sin2θ]
其实就是把旋转轴的方向换成反方向,实部是不变的,只有虚部会反方向
q − 1 = [ c o s θ 2 − n ⃗ ⋅ s i n θ 2 ] q^{-1}=\begin{bmatrix}cos\frac{\theta}{2}\\-\vec n·sin\frac{\theta}{2}\end{bmatrix} q1=[cos2θn sin2θ]

[ q − 1 ] L = q w ⋅ I − q × = [ q ] R [q^{-1}]_{L}=q_{w}·I-q_{×}=[q]_{R} [q1]L=qwIq×=[q]R
[ q − 1 ] R = q w ⋅ I + q × = [ q ] L [q^{-1}]_{R}=q_{w}·I+q_{×}=[q]_{L} [q1]R=qwI+q×=[q]L

我们推导的公式是这样的
= − [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L =-[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L} =[qbkw1qbk+1w]R[(γbk+1bk)1]L

代码中用了上面的变换关系,代码中的公式是这样的
其实就是对四元数取个逆就可以进行左右乘矩阵的变换

= − [ q b k + 1 w − 1 ⊗ q b k w ] L ⋅ [ ( γ b k + 1 b k ) ] R =-[q^{w-1}_{b_{k+1}}\otimes q^{w}_{b_{k}}]_{L}·[(\gamma^{b_{k}}_{b_{k+1}})]_{R} =[qbk+1w1qbkw]L[(γbk+1bk)]R

γ \gamma γ 是预积分量来的
在计算这个雅可比前也还是会用实时修正的零偏对预积分量进行调整,调整后才进入雅可比的计算

对零偏进行求导

上面的公式中没有包含零偏的项,这里要用到预积分一阶近似更新公式
在这里插入图片描述
用这个近似公式代替前面的预积分,再对零偏进行求导

平移 δ α \delta\alpha δα 对 k/i 时刻的 b a 、 b w b_{a}、b_{w} babw的扰动

其实就是对预积分量进行一个扰动,此时预积分量前面的参数都等于是常数直接为0
公式为
− [ ( α ^ b k + 1 b k + J b a α Δ b a ) − α b k + 1 b k ] Δ b a = − J b a α \frac{-[(\hat \alpha^{b_{k}}_{b_{k+1}}+J^{\alpha}_{b_{a}}\Delta b_{a})-\alpha^{b_{k}}_{b_{k+1}}]}{\Delta b_{a}}=-J^{\alpha}_{b_{a}} Δba[(α^bk+1bk+JbaαΔba)αbk+1bk]=Jbaα

b g b_{g} bg 求导也是同理的, α 和 β 都是一样的建模方式 \alpha 和 \beta 都是一样的建模方式 αβ都是一样的建模方式,结果也是一样的
上面是对 i / k 时刻的零偏的求导,这里的零偏也是第 i 时刻的

δ b a \delta b_{a} δba 对 i时刻ba的求导就是 − I -I I b g b_{g} bg 同理

由于预积分量中零偏的建模中都是假设零偏与 k k k 时刻有关,与 k + 1 k+1 k+1 时刻无关的,因为假设预积分过程中零偏是不会变的,虽然有联合优化零偏,但是零偏是通过一阶近似的方式加入到第 k k k 时刻的零偏中,所以 α , β , θ \alpha,\beta,\theta α,β,θ 对于 k + 1 k+1 k+1 时刻的零偏求导都是 0

θ \theta θ 对陀螺仪零偏求导

2 ( γ b k + 1 b k [ 1 1 2 J b w γ δ b w k ] ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w − 2 ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w 2(\gamma^{b_{k}}_{b_{k+1}}\begin{bmatrix}1\\\frac{1}{2}J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}}-2(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} 2(γbk+1bk[121Jbwγδbwk])1(qbkw)1qbk+1w2(γbk+1bk)1(qbkw)1qbk+1w

解开逆
= 2 [ 1 − 1 2 J b w γ δ b w k ] ⊗ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w − 2 ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w =2\begin{bmatrix}1\\-\frac{1}{2}J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix}\otimes(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}}-2(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} =2[121Jbwγδbwk](γbk+1bk)1(qbkw)1qbk+1w2(γbk+1bk)1(qbkw)1qbk+1w

= [ 0 − J b w γ δ b w k ] ⊗ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w =\begin{bmatrix}0\\-J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix}\otimes(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} =[0Jbwγδbwk](γbk+1bk)1(qbkw)1qbk+1w

= [ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w ] R ⋅ [ 0 − J b w γ δ b w k ] ∂ b w k =\frac{\begin{bmatrix} (\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} \end{bmatrix}_{R}·\begin{bmatrix}0\\-J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix}}{\partial b_{w_{k}}} =bwk[(γbk+1bk)1(qbkw)1qbk+1w]R[0Jbwγδbwk]

约掉 b w k b_{w_{k}} bwk
= [ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w ] R ⋅ − J b w γ =\begin{bmatrix} (\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} \end{bmatrix}_{R}·-J^{\gamma}_{b_{w}} =[(γbk+1bk)1(qbkw)1qbk+1w]RJbwγ

= − [ ( ⊗ q b k + 1 w ) − 1 ⊗ q b k w ⊗ γ b k + 1 b k ] L ⋅ J b w γ =-\begin{bmatrix} (\otimes q^{w}_{b_{k+1}})^{-1}\otimes q^{w}_{b_{k}}\otimes \gamma^{b_{k}}_{b_{k+1}} \end{bmatrix}_{L}·J^{\gamma}_{b_{w}} =[(qbk+1w)1qbkwγbk+1bk]LJbwγ

最后这样的形式就和代码中的公式一致了

这篇关于VINS-Mono-后端优化 (二:预积分残差雅可比推导)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/394099

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、