VINS-Mono-后端优化 (二:预积分残差雅可比推导)

2023-11-12 01:15

本文主要是介绍VINS-Mono-后端优化 (二:预积分残差雅可比推导),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


这里是求预积分对约束的参数块进行求导,有这个雅可比矩阵才能进行优化步长的计算,这个是预积分这个约束因子对各个优化变量的求导,后面还有相机的观测

残差块中的 θ \theta θ 是3维的,但是参数块中的四元数是4维的,因为相减后残差只剩虚部了,但是参数是从4个参数变过来的

预积分的残差具体如下,总共有15维的自由度,即y有15维
在这里插入图片描述
而参数块 x x x , 维护的是 k k k k + 1 k+1 k+1 时刻的 P , Q , V , B a , B g P,Q,V,Ba,Bg P,Q,V,Ba,Bg
P是3维,Q是四元数有4维,因为是过参数化的形式,而 V , B a , B g V,Ba,Bg V,Ba,Bg 总共是9维的参数块
所以整个参数块 x x x 的大小为 7+9

残差对残差参数块的求导
[ ∂ e ∂ P k ∂ e ∂ V k ∂ e ∂ P k + 1 ∂ e ∂ V k + 1 ∂ e 1 ∂ P k ∂ e 1 ∂ V k ∂ e 1 ∂ P k + 1 ∂ e 1 ∂ V k + 1 ⋮ ] \begin{bmatrix} \frac{\partial e}{\partial P_{k}} &\frac{\partial e}{\partial V_{k}}&\frac{\partial e}{\partial P_{k+1}}&\frac{\partial e}{\partial V_{k+1}}\\ \frac{\partial e_{1}}{\partial P_{k}} &\frac{\partial e_{1}}{\partial V_{k}}&\frac{\partial e_{1}}{\partial P_{k+1}}&\frac{\partial e_{1}}{\partial V_{k+1}}\\ \vdots \end{bmatrix} PkePke1VkeVke1Pk+1ePk+1e1Vk+1eVk+1e1
这个矩阵有15行,因为误差矩阵 e e e 是15维的(残差分别是 α , β , θ , B a , B g 构成,各自都是 3 个维度 \alpha,\beta,\theta,B_{a},B_{g}构成,各自都是3个维度 α,β,θ,Ba,Bg构成,各自都是3个维度),参数块 P P P 是7维,参数块 V V V 是9维
所以把这个雅可比矩阵分块成了 15 × 7 15×7 15×7 15 × 9 15×9 15×9 15 × 7 15×7 15×7 15 × 9 15×9 15×9 的形式
误差矩阵的维度和参数是不同的,求导就是对构成这个误差函数的里面的全部变量进行求导

由于我们维护的是 R w c R_{wc} Rwc ,所以我们的扰动是右乘的,十四讲里面维护的是 R c w R_{cw} Rcw 所以才使用左乘

对这个误差矩阵进行求导的时候,也可以按照误差参数块进行分别求导的,15=3*5,前三行雅可比使用位移的函数对 P k , V k , P k + 1 , V k + 1 P_{k},V_{k},P_{k+1},V_{k+1} Pk,Vk,Pk+1,Vk+1 进行求导

对位置 δ α \delta\alpha δα 进行求导

以下示例都是对 k k k 时刻的状态量进行求导, k + 1 k+1 k+1 时刻的同理
使用 δ α b k + 1 b k = … \delta\alpha^{b_{k}}_{b_{k+1}}=\dots δαbk+1bk= 分别对 P , Q , V , B a , B g P,Q,V,Ba,Bg P,Q,V,Ba,Bg 进行求导

位置误差 δ α \delta\alpha δα 对平移 P b k w P^{w}_{b_{k}} Pbkw 的求导

代码中的 Q i Q_{i} Qi R b k w R^{w}_{b_{k}} Rbkw ,所以代码中要取逆

∂ δ α b k + 1 b k ∂ P b k w = − R w b k \frac{\partial\delta\alpha^{b_{k}}_{b_{k+1}}}{\partial P^{w}_{b_{k}}}=-R^{b_{k}}_{w} Pbkwδαbk+1bk=Rwbk

位置 δ α \delta\alpha δα 对旋转 R w b k R^{b_{k}}_{w} Rwbk 进行求导

接下来是对旋转 R w b k R^{b_{k}}_{w} Rwbk 进行求导,由于代码中维护的是 R b k w R^{w}_{b_{k}} Rbkw ,所以这里的公式推导要取逆,方便代码的维护,这样是一个旋转方向的问题,如果直接左乘的话旋转方向就是反过来的了,这样操作的话旋转方向就是按照代码中维护的量的方向来进行操作

后面一串相乘后就是一个向量,当作向量 a a a
∂ δ α b k + 1 b k ∂ R w b k = l i m ϕ → 0 ( R b k w e x p ( ϕ ∧ ) ) − 1 ⋅ a − R w b k ⋅ a ϕ \frac{\partial\delta\alpha^{b_{k}}_{b_{k+1}}}{\partial R^{b_{k}}_{w}}=lim_{\phi\rightarrow0}\frac{(R^{w}_{b_{k}}exp(\phi^{\wedge}))^{-1}·a-R^{b_{k}}_{w}·a}{\phi} Rwbkδαbk+1bk=limϕ0ϕ(Rbkwexp(ϕ))1aRwbka

有公式 ( A ⋅ B ) − 1 = B − 1 ⋅ A − 1 (A·B)^{-1}=B^{-1}·A^{-1} (AB)1=B1A1
对旋转向量 ϕ \phi ϕ 取逆,相当于是换了一个旋转方向,所以 ϕ − 1 = − ϕ \phi^{-1}=-\phi ϕ1=ϕ
= ( I − ϕ ∧ ) R w b k ⋅ a − R w b k ⋅ a =(I-\phi^{\wedge})R^{b_{k}}_{w}·a-R^{b_{k}}_{w}·a =(Iϕ)RwbkaRwbka
= − ϕ ∧ ⋅ R w b k ⋅ a =-\phi^{\wedge}·R^{b_{k}}_{w}·a =ϕRwbka

叉乘有一个性质, a ⃗ × b ⃗ = − b ⃗ × a ⃗ \vec{a}×\vec{b}=-\vec{b}×\vec{a} a ×b =b ×a
a ⃗ × b ⃗ = a ∧ ⋅ b \vec{a}×\vec{b}=a^{\wedge}·b a ×b =ab
− b ⃗ × a ⃗ = − b ∧ ⋅ a -\vec{b}×\vec{a}=-b^{\wedge}·a b ×a =ba
a ∧ ⋅ b = − b ∧ ⋅ a a^{\wedge}·b=-b^{\wedge}·a ab=ba

则上面有
= ( R w b k ⋅ a ) ∧ ⋅ ϕ =(R^{b_{k}}_{w}·a)^{\wedge}·\phi =(Rwbka)ϕ

然后约掉分母上的 ϕ \phi ϕ
∂ δ α b k + 1 b k ∂ R w b k = ( R w b k ⋅ a ) ∧ \frac{\partial\delta\alpha^{b_{k}}_{b_{k+1}}}{\partial R^{b_{k}}_{w}}=(R^{b_{k}}_{w}·a)^{\wedge} Rwbkδαbk+1bk=(Rwbka)

对速度 δ β \delta\beta δβ 进行求导

也是使用 δ β b k + 1 b k = … \delta\beta^{b_{k}}_{b_{k+1}}=\dots δβbk+1bk= 分别对 P , Q , V , B a , B w P,Q,V,Ba,Bw P,Q,V,Ba,Bw 进行求导

速度 δ β \delta\beta δβ 对位置 P b k w P^{w}_{b_{k}} Pbkw 求导

由于公式里面不含位置,所以这块导数 = 0

速度 δ β \delta\beta δβ 对旋转 R w b k R^{b_{k}}_{w} Rwbk 求导

整体公式结构和上面的位移对旋转求导一致,所以求导结果也是 ( R w b k ⋅ a ) ∧ (R^{b_{k}}_{w}·a)^{\wedge} (Rwbka)

对旋转 δ θ \delta\theta δθ 进行求导

分别对 P , Q , V , B a , B g P,Q,V,Ba,Bg P,Q,V,Ba,Bg 进行求导

由于公式中不包含平移和速度量,所以对应的雅可比也为0
δ θ = 2 ⋅ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w \delta\theta=2·(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} δθ=2(γbk+1bk)1(qbkw)1qbk+1w
k对应代码中的 i ,k+1对应代码中的 j

旋转 δ θ \delta\theta δθ q b k w q^{w}_{b_{k}} qbkw 进行求导

就是在右边加一个扰动,扰动为 [ 1 θ 2 ] T [1 \ \frac{\theta}{2}]^{T} [1 2θ]T
∂ δ θ ∂ q b k w = ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ⊗ [ 1 θ 2 ] ) − 1 ⊗ q b k + 1 w − ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w θ \frac{\partial \delta\theta}{\partial q^{w}_{b_{k}}}=\frac{(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}}\otimes\begin{bmatrix}1\\\frac{\theta}{2} \end{bmatrix})^{-1}\otimes q^{w}_{b_{k+1}}-(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}}}{\theta} qbkwδθ=θ(γbk+1bk)1(qbkw[12θ])1qbk+1w(γbk+1bk)1(qbkw)1qbk+1w

把逆乘进去,对于扰动那里其实就是把虚部 n ⃗ \vec n n 变一个旋转方向,所以是取个负号
= ( γ b k + 1 b k ) − 1 ⊗ [ 1 − θ 2 ] ⊗ q b k w − 1 ⊗ q b k + 1 w − ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w =(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes\begin{bmatrix}1\\-\frac{\theta}{2} \end{bmatrix}\otimes q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}-(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} =(γbk+1bk)1[12θ]qbkw1qbk+1w(γbk+1bk)1(qbkw)1qbk+1w

这里会用一个四元数的性质
a ⊗ b = [ a ] L ⋅ b = [ b ] R ⋅ a a\otimes b=[a]_{L}·b=[b]_{R}·a ab=[a]Lb=[b]Ra
具体看这篇文章讲解VINS-Mono-IMU预积分 (二:连续时间的PVQ积分+四元数求导)

公式变成
= 2 [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ 1 − θ 2 ] ] − [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ 1 0 ⋮ ] ] =2[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·\begin{bmatrix}[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}·\begin{bmatrix}1\\-\frac{\theta}{2} \end{bmatrix}\end{bmatrix}-[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·\begin{bmatrix}[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}·\begin{bmatrix}1\\ 0 \\\vdots \end{bmatrix}\end{bmatrix} =2[qbkw1qbk+1w]R[[(γbk+1bk)1]L[12θ]][qbkw1qbk+1w]R [(γbk+1bk)1]L 10
= 2 [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ [ 1 − θ 2 ] − [ 1 0 ⋮ ] ] =2[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}·\begin{bmatrix} \begin{bmatrix}1\\-\frac{\theta}{2} \end{bmatrix} - \begin{bmatrix}1\\ 0 \\\vdots \end{bmatrix}\end{bmatrix} =2[qbkw1qbk+1w]R[(γbk+1bk)1]L [12θ] 10
= [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ 0 − θ ] x y z θ =\frac{[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}· \begin{bmatrix}0\\-\theta \end{bmatrix}_{xyz}}{\theta} =θ[qbkw1qbk+1w]R[(γbk+1bk)1]L[0θ]xyz

θ \theta θ 约掉

= − [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L =-[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L} =[qbkw1qbk+1w]R[(γbk+1bk)1]L

这里乘完后的结果只有四元数的虚部 x y z xyz xyz
所以把四元数进行矩阵化的公式会有点变动
原本的
[ q ] L = q w ⋅ I + [ 0 − q T q q × ] [q]_{L}=q_{w}·I+\begin{bmatrix}0&-q^{T}\\q&q_{×} \end{bmatrix} [q]L=qwI+[0qqTq×]
[ q ] R = q w ⋅ I + [ 0 − q T q − q × ] [q]_{R}=q_{w}·I+\begin{bmatrix}0&-q^{T}\\q&-q_{×} \end{bmatrix} [q]R=qwI+[0qqTq×]
当只取虚部的时候
[ q ] L = q w ⋅ I + q × [q]_{L}=q_{w}·I+q_{×} [q]L=qwI+q×
[ q ] R = q w ⋅ I − q × [q]_{R}=q_{w}·I-q_{×} [q]R=qwIq×

对于一个四元数取逆的时候
q = [ c o s θ 2 n ⃗ ⋅ s i n θ 2 ] q=\begin{bmatrix}cos\frac{\theta}{2}\\\vec n·sin\frac{\theta}{2}\end{bmatrix} q=[cos2θn sin2θ]
其实就是把旋转轴的方向换成反方向,实部是不变的,只有虚部会反方向
q − 1 = [ c o s θ 2 − n ⃗ ⋅ s i n θ 2 ] q^{-1}=\begin{bmatrix}cos\frac{\theta}{2}\\-\vec n·sin\frac{\theta}{2}\end{bmatrix} q1=[cos2θn sin2θ]

[ q − 1 ] L = q w ⋅ I − q × = [ q ] R [q^{-1}]_{L}=q_{w}·I-q_{×}=[q]_{R} [q1]L=qwIq×=[q]R
[ q − 1 ] R = q w ⋅ I + q × = [ q ] L [q^{-1}]_{R}=q_{w}·I+q_{×}=[q]_{L} [q1]R=qwI+q×=[q]L

我们推导的公式是这样的
= − [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L =-[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L} =[qbkw1qbk+1w]R[(γbk+1bk)1]L

代码中用了上面的变换关系,代码中的公式是这样的
其实就是对四元数取个逆就可以进行左右乘矩阵的变换

= − [ q b k + 1 w − 1 ⊗ q b k w ] L ⋅ [ ( γ b k + 1 b k ) ] R =-[q^{w-1}_{b_{k+1}}\otimes q^{w}_{b_{k}}]_{L}·[(\gamma^{b_{k}}_{b_{k+1}})]_{R} =[qbk+1w1qbkw]L[(γbk+1bk)]R

γ \gamma γ 是预积分量来的
在计算这个雅可比前也还是会用实时修正的零偏对预积分量进行调整,调整后才进入雅可比的计算

对零偏进行求导

上面的公式中没有包含零偏的项,这里要用到预积分一阶近似更新公式
在这里插入图片描述
用这个近似公式代替前面的预积分,再对零偏进行求导

平移 δ α \delta\alpha δα 对 k/i 时刻的 b a 、 b w b_{a}、b_{w} babw的扰动

其实就是对预积分量进行一个扰动,此时预积分量前面的参数都等于是常数直接为0
公式为
− [ ( α ^ b k + 1 b k + J b a α Δ b a ) − α b k + 1 b k ] Δ b a = − J b a α \frac{-[(\hat \alpha^{b_{k}}_{b_{k+1}}+J^{\alpha}_{b_{a}}\Delta b_{a})-\alpha^{b_{k}}_{b_{k+1}}]}{\Delta b_{a}}=-J^{\alpha}_{b_{a}} Δba[(α^bk+1bk+JbaαΔba)αbk+1bk]=Jbaα

b g b_{g} bg 求导也是同理的, α 和 β 都是一样的建模方式 \alpha 和 \beta 都是一样的建模方式 αβ都是一样的建模方式,结果也是一样的
上面是对 i / k 时刻的零偏的求导,这里的零偏也是第 i 时刻的

δ b a \delta b_{a} δba 对 i时刻ba的求导就是 − I -I I b g b_{g} bg 同理

由于预积分量中零偏的建模中都是假设零偏与 k k k 时刻有关,与 k + 1 k+1 k+1 时刻无关的,因为假设预积分过程中零偏是不会变的,虽然有联合优化零偏,但是零偏是通过一阶近似的方式加入到第 k k k 时刻的零偏中,所以 α , β , θ \alpha,\beta,\theta α,β,θ 对于 k + 1 k+1 k+1 时刻的零偏求导都是 0

θ \theta θ 对陀螺仪零偏求导

2 ( γ b k + 1 b k [ 1 1 2 J b w γ δ b w k ] ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w − 2 ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w 2(\gamma^{b_{k}}_{b_{k+1}}\begin{bmatrix}1\\\frac{1}{2}J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}}-2(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} 2(γbk+1bk[121Jbwγδbwk])1(qbkw)1qbk+1w2(γbk+1bk)1(qbkw)1qbk+1w

解开逆
= 2 [ 1 − 1 2 J b w γ δ b w k ] ⊗ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w − 2 ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w =2\begin{bmatrix}1\\-\frac{1}{2}J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix}\otimes(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}}-2(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} =2[121Jbwγδbwk](γbk+1bk)1(qbkw)1qbk+1w2(γbk+1bk)1(qbkw)1qbk+1w

= [ 0 − J b w γ δ b w k ] ⊗ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w =\begin{bmatrix}0\\-J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix}\otimes(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} =[0Jbwγδbwk](γbk+1bk)1(qbkw)1qbk+1w

= [ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w ] R ⋅ [ 0 − J b w γ δ b w k ] ∂ b w k =\frac{\begin{bmatrix} (\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} \end{bmatrix}_{R}·\begin{bmatrix}0\\-J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix}}{\partial b_{w_{k}}} =bwk[(γbk+1bk)1(qbkw)1qbk+1w]R[0Jbwγδbwk]

约掉 b w k b_{w_{k}} bwk
= [ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w ] R ⋅ − J b w γ =\begin{bmatrix} (\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} \end{bmatrix}_{R}·-J^{\gamma}_{b_{w}} =[(γbk+1bk)1(qbkw)1qbk+1w]RJbwγ

= − [ ( ⊗ q b k + 1 w ) − 1 ⊗ q b k w ⊗ γ b k + 1 b k ] L ⋅ J b w γ =-\begin{bmatrix} (\otimes q^{w}_{b_{k+1}})^{-1}\otimes q^{w}_{b_{k}}\otimes \gamma^{b_{k}}_{b_{k+1}} \end{bmatrix}_{L}·J^{\gamma}_{b_{w}} =[(qbk+1w)1qbkwγbk+1bk]LJbwγ

最后这样的形式就和代码中的公式一致了

这篇关于VINS-Mono-后端优化 (二:预积分残差雅可比推导)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/394099

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份