数据分析实战 | SVM算法——病例自动诊断分析

2023-11-11 19:30

本文主要是介绍数据分析实战 | SVM算法——病例自动诊断分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、数据分析及对象

二、目的及分析任务

三、方法及工具

四、数据读入

五、数据理解

六、数据准备

七、模型训练

八、模型应用及评价


一、数据分析及对象

CSV文件——“bc_data.csv”

数据集链接:https://download.csdn.net/download/m0_70452407/88524905

该数据集主要记录了569个病例的32个属性,主要属性/字段如下:

(1)ID:病例的ID。

(2)Diagnosis(诊断结果):M为恶性,B为良性。该数据集共包含357个良性病例和212个恶性病例。

(3)细胞核的10个特征值,包括radius(半径)、texture(纹理)、perimeter(周长)、面积(area)、平滑度(smoothness)、紧凑度(compactness)、凹面(concavity)、凹点(concave points)、对称性(symmetry)和分形维数(fractal dimension)等。同时,为上述10个特征值分别提供了3种统计量,分别为均值(mean)、标准差(standard error)和最大值(worst or largest)。

二、目的及分析任务

(1)使用训练集对SVM模型进行训练。

(2)使用SVM模型对威斯康星乳腺癌数据集的诊断结果进行预测。

(3)对SVM模型进行评价。

三、方法及工具

Python语言及pandas、NumPy、matplotlib、scikit-learn包。

svm.SVC的超参数及其解读:

svm.SVC的超参数及其解读
参数名称参数类型说明
C浮点型,必须为正,默认值为1.0在sklearn.svm.SVC中使用的惩罚是L2范数的平方,C对应的是此惩罚的正则化参数,即惩罚的系数。C值越大,则表明对分类错误的惩罚越大,因此分类结果更倾向于全正确的情况;C值越小,则表明对分类错误的惩罚越小,因此分类结果将允许更多的错误。
kernel可以是以下中的任意字符:’linear','poly','rbf','sigmoid','precomputed';默认为'rbf'。核函数类型,'rbf'为径向基函数,'linear'为线性核,'poly'为多项式核函数
degree类型int,默认值为3当指定kernel为'poly'时,表示选择的多项式的最高次数,默认为三次多项式(poly)
gamma'scale'、’auto'或者'float',默认值为'scale'(在0.22版本之前,默认为'auto'gamma为'rbf'、’poly'、'sigmoid'的核系数。
decision_function_shape默认为'ovr',只有两个值可供选择'ovr'和'ovo'在处理多分类问题时,确定采用某种策略。'ovr'表示一对一的分类器,假如有k个类别,则需要构建k*(k-1)/2个分类器;'ovo'为一对多的分类器,假如有k个类别,则需要构建k个分类器。

四、数据读入

导入需要的第三方包:

import pandas as pd
import numpy as np
import matplotlib.pyplot#导入sklearn的svm
from sklearn import svm#导入metrics评估方法
from sklearn import metrics#train_test_split用于拆分训练集和测试集
from sklearn.model_selection import train_test_split#StandardScalery作用是去均值和方差归一化
from sklearn.preprocessing import StandardScaler

读入数据:

df_bc_data=pd.read_csv("D:\\Download\\JDK\\数据分析理论与实践by朝乐门_机械工业出版社\\第4章 分类分析\\bc_data.csv")

对数据集进行显示:

df_bc_data

五、数据理解

对数据框df_bc_data进行探索性分析,这里采用的实现方法为调用pandas包中数据框(DataFrame)的describe()方法。

df_bc_data.describe()

 查看数据集中是否存在缺失值:

df_bc_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):#   Column                   Non-Null Count  Dtype  
---  ------                   --------------  -----  0   id                       569 non-null    int64  1   diagnosis                569 non-null    object 2   radius_mean              569 non-null    float643   texture_mean             569 non-null    float644   perimeter_mean           569 non-null    float645   area_mean                569 non-null    float646   smoothness_mean          569 non-null    float647   compactness_mean         569 non-null    float648   concavity_mean           569 non-null    float649   concave points_mean      569 non-null    float6410  symmetry_mean            569 non-null    float6411  fractal_dimension_mean   569 non-null    float6412  radius_se                569 non-null    float6413  texture_se               569 non-null    float6414  perimeter_se             569 non-null    float6415  area_se                  569 non-null    float6416  smoothness_se            569 non-null    float6417  compactness_se           569 non-null    float6418  concavity_se             569 non-null    float6419  concave points_se        569 non-null    float6420  symmetry_se              569 non-null    float6421  fractal_dimension_se     569 non-null    float6422  radius_worst             569 non-null    float6423  texture_worst            569 non-null    float6424  perimeter_worst          569 non-null    float6425  area_worst               569 non-null    float6426  smoothness_worst         569 non-null    float6427  compactness_worst        569 non-null    float6428  concavity_worst          569 non-null    float6429  concave_points_worst     569 non-null    float6430  symmetry_worst           569 non-null    float6431  fractal_dimension_worst  569 non-null    float64
dtypes: float64(30), int64(1), object(1)
memory usage: 142.4+ KB

查看数据是否存在不均衡的问题:

df_bc_data['diagnosis'].value_counts()
B    357
M    212
Name: diagnosis, dtype: int64

六、数据准备

由于id一列并非为自变量或因变量,删除该列。

new_bc=df_bc_data.drop(['id'],axis=1)

将diagnosis属性字段的取值,'M'使用1代替,'B'使用0代替。

new_bc['diagnosis']=new_bc['diagnosis'].map({'M':1,'B':0})

将数据集拆分为训练集和测试集,这里使用20%的数据作为测试集。

bc_train,bc_test=train_test_split(new_bc,test_size=0.2)

将训练集和测试集的数据属性和标签进行拆分。

#对训练集的数据和标签进行拆分
bc_train_data=bc_train.iloc[:,1:]
bc_train_label=bc_train['diagnosis']
#对测试集的数据和标签进行拆分
bc_test_data=bc_test.iloc[:,1:]
bc_test_label=bc_test['diagnosis']

为了排除数值的量纲对结果的影响,需要对训练数据和预测数据进行标准化处理。

bc_train_data=StandardScaler().fit_transform(bc_train_data)
bc_test_data=StandardScaler().fit_transform(bc_test_data)

七、模型训练

使用训练集训练SVM模型。除了直接指定参数的数值之外,还可以使用自动调参计数(如GridSearchCV)进行参数选择。

bc_model=svm.SVC(C=0.2,kernel='linear') #创建SVM分类器
bc_model.fit(bc_train_data,bc_train_label)  #训练模型
SVC(C=0.2, kernel='linear')

八、模型应用及评价

使用已经训练好的SVM模型,在测试集上进行测试,并输出评价指标的取值。

#在测试集上应用模型,并进行评价
prediction=bc_model.predict(bc_test_data)
#评价指标
print("混淆矩阵:\n",metrics.confusion_matrix(bc_test_label,prediction))
print("准确率:",metrics.accuracy_score(bc_test_label,prediction))
print('查准率:',metrics.precision_score(bc_test_label,prediction))
print('召回率:',metrics.recall_score(bc_test_label,prediction))
print("F1值:",metrics.f1_score(bc_test_label,prediction))
混淆矩阵:[[74  0][ 1 39]]
准确率: 0.9912280701754386
查准率: 1.0
召回率: 0.975
F1值: 0.9873417721518987

这篇关于数据分析实战 | SVM算法——病例自动诊断分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/392333

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis