深度之眼AI自媒体联合科赛平台银行客户二分类算法比赛参赛经验分享

本文主要是介绍深度之眼AI自媒体联合科赛平台银行客户二分类算法比赛参赛经验分享,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

比赛简介

近段时间参加了"深度之眼"联合"科赛"推出的银行客户二分类算法比赛,在“深度之眼”指导李老师的视频教学指导下,有幸复现出baseline。这里首先感谢平台和李老师。比赛链接:「二分类算法」提供银行精准营销解决方案。

赛题描述

数据集:选自UCI机器学习库中的「银行营销数据集(Bank Marketing Data Set)」

这些数据与葡萄牙银行机构的营销活动相关。这些营销活动以电话为基础,一般,银行的客服人员需要联系客户至少一次,以此确认客户是否将认购该银行的产品(定期存款)。因此,与该数据集对应的任务是「分类任务」,「分类目标」是预测客户是(' 1 ')或者否(' 0 ')购买该银行的产品,可以看出来是典型的二分类问题。

数据与评测算法

本次评测算法为:AUC(Area Under the Curve) 。关于这个评价指标的介绍网上有很多博客,这里不是本文探讨的重点部分。

训练集简单描述

官方给出train_set.csv和test_set.csv,其中train_set.csv供选手用于训练,test_set.csv供选手用于预测。train_set.csv中包含的每列特征信息如下所示。

test_set.scv测试集中除了不含有最后需要预测的 'y' 分类这一列,其他所含列信息与train_set.csv类似。训练集一共18个字段,数据的品质很高,没有Nan或脏数据。其中数值型特征有8个,分类型特征有9个,标签为 'y'。

 

baseline代码

相关模块引入

import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
import lightgbm as lgb
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from sklearn import metrics
from sklearn.model_selection import GridSearchCV
import warnings
warnings.filterwarnings("ignore")

数据读入

#读入数据
dataSet = pd.read_csv("D:\\AI\\game\\2019Kesci二分类算法比赛\\dataSet\\train_set.csv")
testSet = pd.read_csv("D:\\AI\\game\\2019Kesci二分类算法比赛\\dataSet\\test_set.csv")
dataSet.head()
 IDagejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviouspoutcomey
0143managementmarriedtertiaryno291yesnounknown9may1502-10unknown0
1242techniciandivorcedprimaryno5076yesnocellular7apr9912512other0
2347admin.marriedsecondaryno104yesyescellular14jul772-10unknown0
3428managementsinglesecondaryno-994yesyescellular18jul1742-10unknown0
4542techniciandivorcedsecondaryno2974yesnounknown21may1875-10unknown0
testSet.head()

 

 IDagejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviouspoutcome
02531851housemaidmarriedunknownno174nonotelephone29jul3083-10unknown
12531932managementmarriedtertiaryno6059yesnocellular20nov1102-10unknown
22532060retiredmarriedprimaryno0nonotelephone30jul1303-10unknown
32532132studentsingletertiaryno64nonocellular30jun59841055failure
42532241housemaidmarriedsecondaryno0yesyescellular15jul3684-10unknown

简单查看下数据分布

dataSet.describe()
 IDagebalancedaydurationcampaignpdayspreviousy
count25317.00000025317.00000025317.00000025317.00000025317.00000025317.00000025317.00000025317.00000025317.000000
mean12659.00000040.9353791357.55508215.835289257.7323932.77205040.2487660.5917370.116957
std7308.53271910.6342892999.8228118.319480256.9751513.136097100.2135412.5683130.321375
min1.00000018.000000-8019.0000001.0000000.0000001.000000-1.0000000.0000000.000000
25%6330.00000033.00000073.0000008.000000103.0000001.000000-1.0000000.0000000.000000
50%12659.00000039.000000448.00000016.000000181.0000002.000000-1.0000000.0000000.000000
75%18988.00000048.0000001435.00000021.000000317.0000003.000000-1.0000000.0000000.000000
max25317.00000095.000000102127.00000031.0000003881.00000055.000000854.000000275.0000001.000000

看下String型每列特征值具体有哪些

print(dataSet['job'].unique())['management' 'technician' 'admin.' 'services' 'retired' 'student''blue-collar' 'unknown' 'entrepreneur' 'housemaid' 'self-employed''unemployed']print(dataSet['marital'].unique())['married' 'divorced' 'single']print(dataSet['education'].unique())['tertiary' 'primary' 'secondary' 'unknown']print(dataSet['default'].unique())['no' 'yes']print(dataSet['housing'].unique())['yes' 'no']print(dataSet['loan'].unique())['yes' 'no']print(dataSet['loan'].unique())['no' 'yes']print(dataSet['contact'].unique())['unknown' 'cellular' 'telephone']print(dataSet['month'].unique())['may' 'apr' 'jul' 'jun' 'nov' 'aug' 'jan' 'feb' 'dec' 'oct' 'sep' 'mar']print(dataSet['poutcome'].unique())['unknown' 'other' 'failure' 'success']print(dataSet['y'].unique())[0 1]

String类型数据转化

#暂时不构建特征,首先将string类型数据转化成Category类型
for col in dataSet.columns[dataSet.dtypes == 'object']:le = preprocessing.LabelEncoder()le.fit(dataSet[col])dataSet[col] = le.transform(dataSet[col])testSet[col] = le.transform(testSet[col])dataSet.head()

 

 IDagejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviouspoutcomey
01434120291102981502-1030
12429000507610070991251210
23470110104110145772-1030
34284210-9941101851742-1030
4542901029741022181875-1030

可以看出来,所有的String类型特征值已经被转化成相应的数字类别特征值。

数据normalization

scaler = preprocessing.StandardScaler()
scaler.fit(dataSet[['age','balance','duration','campaign','pdays','previous']])
dataSet[['age','balance','duration','campaign','pdays','previous']] = scaler.transform(dataSet[['age','balance','duration','campaign','pdays','previous']])
testSet[['age','balance','duration','campaign','pdays','previous']] = scaler.transform(testSet[['age','balance','duration','campaign','pdays','previous']]dataSet.head()

 

 IDagejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviouspoutcomey
010.1941514120-0.35554610298-0.419241-0.246187-0.411617-0.23040430
120.10011490001.23957910070-0.617708-0.5650612.1030630.54833310
230.5703010110-0.417885110145-0.703321-0.246187-0.411617-0.23040430
34-1.2164084210-0.783913110185-0.325845-0.246187-0.411617-0.23040430
450.10011490100.538857102218-0.2752550.710435-0.411617-0.23040430

 可以看出来相应的特征已经被normalization。

构建模型之前预处理

baseline版本暂时没有做深入的特征工程,简单做了下数据预处理之后,使用lightgbm融合xgboost进行建模,具体如下:

dataSet_new = list(set(dataSet.columns) - set(['ID','y']))seed = 42
X_train, X_val, y_train, y_val = train_test_split(dataSet[dataSet_new], dataSet['y'], test_size = 0.2, random_state = seed)train_data = lgb.Dataset(X_train, label = y_train)
val_data = lgb.Dataset(X_val, label = y_val, reference = train_data)

建模和参数调节

params = {'task': 'train','boosting_type': 'gbdt','objective': 'binary','metric': {'auc'},'verbose': 0,'num_leaves': 30,'learning_rate': 0.01,'is_unbalance': True}model = lgb.train(params,train_data,num_boost_round = 1000,valid_sets = val_data,early_stopping_rounds = 10,categorical_feature = ['job','marital','education','default','housing','loan','contact','poutcome'])

训练结果如下,可以看出来,689轮训练之后达到了早停,线上验证集测试auc为:0.934334。

lightgbm模型预测

pred1 = model.predict(testSet[dataSet_new])

引入xgboost模型调参

xg_reg = xgb.XGBRegressor(objective = 'reg:linear', colsample_bytree = 0.3, learning_rate = 0.1, max_depth = 8,alpha = 8, n_estimators = 500, reg_lambda = 1)
xg_reg.fit(X_train,y_train)

xgboost模型预测

pred2 = xg_reg.predict(testSet[dataSet_new])

生成提交文件

result = pd.DataFrame()
result['ID'] = testSet['ID']
result['pred'] = (pred1 + pred2) / 2
result.to_csv('D:\\AI\\game\\2019Kesci二分类算法比赛\\提交结果\\蜗壳星空_ver1.csv',index=False)

查看线上成绩和排名

可以看出来,排名167名,与top1的1.00的成绩还有相当大的差距。本文仅仅是提供一个baseline,并祝愿各位大佬在后面的阶段比赛顺利,取得满意的成绩!!!

 

这篇关于深度之眼AI自媒体联合科赛平台银行客户二分类算法比赛参赛经验分享的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382748

相关文章

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为