Talk | 西安交通大学博士生赵子祥:基于先验知识指导的多模态图像融合算法研究

本文主要是介绍Talk | 西安交通大学博士生赵子祥:基于先验知识指导的多模态图像融合算法研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本期为TechBeat人工智能社区544线上Talk!

北京时间11月08(周三)20:00,西安交通大学博士生-赵子祥的Talk将准时在TechBeat人工智能社区开播!

他与大家分享的主题是: 基于先验知识指导的多模态图像融合算法研究,介绍了他的团队在多模态图像融合技术上所做的一系列研究成果。

Talk·信息

主题:基于先验知识指导的多模态图像融合算法研究

嘉宾:西安交通大学博士生 赵子祥

时间:北京时间 11月08日(周三)20:00

地点:TechBeat人工智能社区

点击下方链接,即可观看视频!

TechBeatTechBeat是荟聚全球华人AI精英的成长社区,每周上新来自顶尖大厂、明星创业公司、国际顶级高校相关专业在读博士的最新研究工作。我们希望为AI人才打造更专业的服务和体验,加速并陪伴其成长。icon-default.png?t=N7T8https://www.techbeat.net/talk-info?id=823

Talk·介绍

多模态图像融合技术,旨在通过结合多种传感器(如可见光、红外、深度、多光谱等传感器)的优点,互补单一传感器在某些特定的应用环境或场景中受到的限制和缺陷,从而得到一个更全面、更准确的信息表征和目标刻画。这种综合了多种信息源的融合结果通常比任何单一传感器提供的信息都要丰富和准确,可以极大提升人与机器对未知场景的环境理解与模式识别的能力。但是,伴随着深度学习方法的飞速发展,基于大数据的端到端学习难以显式地刻画观测数据的生成分布与融合结果的先验分布,并且鲜有能够充分嵌入领域先验的方法,从而降低了算法设计的可解释性与可控性。因此,在本报告中,我们探索了如何设计基于先验知识指导的多模态图像融合算法,将数学、统计知识与人工智能算法有机地结合起来。内容涵盖基于相关性驱动的跨模态特征提取、非欧氏空间下的特征分离与对比学习、基于等变成像先验的自监督学习框架、基于优化展开的模型先验和基于去噪扩散模型的生成先验等领域先验知识对于多模态图像融合算法的促进作用。本报告的研究成果发表在机器学习与计算机视觉顶级会议CVPR22、CVPR23和ICCV23中。

Talk大纲

1、为什么要研究多模态图像融合

2、多模态图像融合中的关键问题

3、多模态图像融合的探索:生成式算法 (ICCV 2023 Oral) 和判别式算法 (CVPR 2023)

4、多模态图像超分辨率:模型驱动算法 (CVPR 2022 Oral) 和数据驱动算法 (ICCV 2023)

Talk·预习资料

Image

文章链接:https://arxiv.org/abs/2303.06840

Image

文章链接:https://arxiv.org/abs/2303.08942

Image

文章链接:https://arxiv.org/abs/2211.14461

Image

文章链接:https://arxiv.org/abs/2104.06977

Talk·提问交流

在Talk界面下的【交流区】参与互动!留下你的打call🤟和问题🙋,和更多小伙伴们共同讨论,被讲者直接翻牌解答!

你的每一次贡献,我们都会给予你相应的i豆积分,还会有惊喜奖励哦!

Talk·嘉宾介绍

​​​​​​​

Image

赵子祥

西安交通大学博士生

赵子祥,西安交通大学数学与统计学院博士四年级在读,师从张讲社教授。现为苏黎世联邦理工学院信息技术与电气工程系Computer Vision Lab联合培养博士生,导师为Luc Van Gool教授。曾任哈佛大学计算机科学系Visual Computing Group研究助理,导师为Hanspeter Pfister教授。研究方向为底层视觉,图像增强,多模态信息融合。目前在CVPR、ICCV等国际顶级计算机视觉会议与IEEE汇刊等国际期刊上共计发表学术论文十余篇,并担任CVPR、ICCV、NeurIPS等国际会议程序委员,以及IEEE TPAMI、IJCV、TIP等国际期刊审稿人。

个人主页: TechBeat


关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区

这篇关于Talk | 西安交通大学博士生赵子祥:基于先验知识指导的多模态图像融合算法研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379862

相关文章

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int