Action Recognition-Temporal Attentive Alignment for Large-Scale Video Domain Adaptation——ICCV2019

本文主要是介绍Action Recognition-Temporal Attentive Alignment for Large-Scale Video Domain Adaptation——ICCV2019,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

Abstract

image-based domain adaptation, domain shift in videos,
Two large-scale DA datasets (UCF-HMDB_full, Kinetics-Gameplay)

Introduction

videos can suffer from domain discrepancy along both the spatial and temporal directions.
Claim的两个点:
在这里插入图片描述

Conclusion

the presented datasets is including both real and virtual domains;
Align and learn temporal dynamics;future work, different cross-domain video tasks, open-set setting;

Key points: 代码和数据集开源;写的逻辑更清楚;打的点就是解决real-world problems; video classification和action recognition的区别和关系(相似); video domain adaptation的相关工作比较少;

这篇关于Action Recognition-Temporal Attentive Alignment for Large-Scale Video Domain Adaptation——ICCV2019的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/375533

相关文章

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

Apple quietly slips WebRTC audio, video into Safari's WebKit spec

转自:http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-into-safaris-webkit-spec/?from=timeline&isappinstalled=0 http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

Unable to instantiate Action, goodsTypeAction, defined for 'goodsType_findAdvanced' in namespace '/

报错: Unable to instantiate Action, goodsTypeAction,  defined for 'goodsType_findAdvanced' in namespace '/'goodsTypeAction......... Caused by: java.lang.ClassNotFoundException: goodsTypeAction.......

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探

用ajax json给后台action传数据要注意的问题

必须要有get和set方法   1 action中定义bean变量,注意写get和set方法 2 js中写ajax方法,传json类型数据 3 配置action在struts2中

使用http-request 属性替代action绑定上传URL

在 Element UI 的 <el-upload> 组件中,如果你需要为上传的 HTTP 请求添加自定义的请求头(例如,为了通过身份验证或满足服务器端的特定要求),你不能直接在 <el-upload> 组件的属性中设置这些请求头。但是,你可以通过 http-request 属性来自定义上传的行为,包括设置请求头。 http-request 属性允许你完全控制上传的行为,包括如何构建请求、发送请

HumanNeRF:Free-viewpoint Rendering of Moving People from Monocular Video 翻译

HumanNeRF:单目视频中运动人物的自由视点绘制 引言。我们介绍了一种自由视点渲染方法- HumanNeRF -它适用于一个给定的单眼视频ofa人类执行复杂的身体运动,例如,从YouTube的视频。我们的方法可以在任何帧暂停视频,并从任意新的摄像机视点或甚至针对该特定帧和身体姿势的完整360度摄像机路径渲染主体。这项任务特别具有挑战性,因为它需要合成身体的照片级真实感细节,如从输入视频中可能

高精度打表-Factoring Large Numbers

求斐波那契数,不打表的话会超时,打表的话普通的高精度开不出来那么大的数组,不如一个int存8位,特殊处理一下,具体看代码 #include<stdio.h>#include<string.h>#define MAX_SIZE 5005#define LEN 150#define to 100000000/*一个int存8位*/int num[MAX_SIZE][LEN];void