深度学习理论知识入门【EM算法、VAE算法、GAN算法】和【RBM算法、MCMC算法、HMC算法】

2023-11-09 05:44

本文主要是介绍深度学习理论知识入门【EM算法、VAE算法、GAN算法】和【RBM算法、MCMC算法、HMC算法】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 深度学习理论知识入门
        • 首先,让我们了解第一个流程:
        • 现在,让我们看看第二个流程:
    • EM算法
    • GMM(高斯混合模型)

深度学习理论知识入门


首先,让我们了解第一个流程:

EM(Expectation-Maximization):EM算法是一种迭代优化算法,用于在存在潜在变量的统计模型中进行参数估计。它通过交替的E步骤(Expectation,期望)和M步骤(Maximization,最大化)来最大化似然函数。

VAE(Variational Autoencoder):VAE是一种生成模型,结合了自动编码器和变分推断的概念。它可以学习数据的潜在表示,并生成与原始数据相似的新样本。

GAN(Generative Adversarial Networks):GAN是一种生成模型,由生成器和判别器组成。生成器试图生成逼真的样本,而判别器则试图区分生成的样本和真实样本。通过对抗训练,生成器和判别器相互竞争,最终生成器可以生成更逼真的样本。

现在,让我们看看第二个流程:

采样:在机器学习中,采样通常指从概率分布中抽取样本。通过采样,我们可以生成符合给定分布的样本。

RBM(Restricted Boltzmann Machine):RBM是一种基于能量的神经网络模型,用于学习数据的概率分布。它是一种受限制的玻尔兹曼机,其中神经元之间存在限制条件。

MCMC(Markov Chain Monte Carlo):MCMC是一种采样方法,用于从复杂的概率分布中抽取样本。它利用马尔科夫链的性质,通过迭代过程生成样本。

HMC(Hamiltonian Monte Carlo):HMC是一种MCMC方法的变体,通过模拟物理系统中的哈密顿动力学来生成样本。它可以更有效地探索高维空间中的分布。


EM算法

EM算法(Expectation-Maximization)是一种迭代优化算法,用于在存在潜在变量的统计模型中进行参数估计。它通过交替的E步骤(Expectation,期望)和M步骤(Maximization,最大化)来最大化似然函数。下面我将简要推导EM算法,并提供一个应用的示例。

假设我们有一组观测数据X和一组对应的未观测的潜在变量Z。我们希望通过最大似然估计来估计模型的参数θ。然而,由于存在未观测的潜在变量Z,直接求解似然函数可能会非常困难。

EM算法通过引入潜在变量的期望值来简化问题。其基本思想是,在每次迭代中,通过已知的参数值计算出潜在变量的期望值(E步骤),然后用这些期望值来最大化完全数据的似然函数(M步骤)。这个过程不断迭代,直到收敛到一个局部最优解。

下面是EM算法的推导过程:

初始化参数θ的值。

E步骤(Expectation):计算在给定参数θ下,完全数据的潜在变量Z的条件概率分布P(Z|X, θ)。这个步骤计算出每个样本的潜在变量的期望值。

M步骤(Maximization):最大化完全数据的对数似然函数,得到新的参数估计值θ。这个步骤使用E步骤中计算得到的潜在变量的期望值。

重复步骤2和步骤3,直到收敛或达到最大迭代次数。

现在,让我们通过一个简单的高斯混合模型的例子来说明EM算法的应用。

假设我们观测到一组由两个高斯分布生成的一维数据。我们的目标是使用EM算法来估计这两个高斯分布的均值和方差。

初始化参数:随机初始化两个高斯分布的均值和方差。

E步骤(Expectation):对于每个观测数据,计算其属于每个高斯分布的概率。这可以使用贝叶斯定理和当前参数值计算得到。

M步骤(Maximization):使用E步骤中计算得到的数据点的分配概率,更新高斯分布的均值和方差。

重复步骤2和步骤3,直到参数收敛或达到最大迭代次数。

通过迭代E步骤和M步骤,EM算法将逐渐优化均值和方差的估计,使其更好地拟合观测数据。

这只是EM算法的简单示例,实际应用中可能涉及更复杂的模型和参数。然而,这个例子希望能够帮助您理解EM算法的基本原理和应用过程。


GMM(高斯混合模型)

当涉及到使用EM算法的实际例子时,一个经典的案例是高斯混合模型(Gaussian Mixture Model,GMM)。下面是使用Python和PyTorch库实现GMM的示例代码:

import torch
from torch.distributions import Normal, Categorical# 生成一些示例数据
torch.manual_seed(42)
num_samples = 1000
true_means = torch.tensor([-1.0, 1.0])
true_stddevs = torch.tensor([0.5, 0.8])
true_weights = torch.tensor([0.4, 0.6])
true_distribution = Categorical(true_weights)
true_component_indices = true_distribution.sample((num_samples,))
samples = torch.stack([Normal(true_means[i], true_stddevs[i]).sample()for i in true_component_indices
])# 初始化参数
num_components = 2
estimated_means = torch.tensor([-0.5, 0.5], requires_grad=True)
estimated_stddevs = torch.tensor([1.0, 1.0], requires_grad=True)
estimated_weights = torch.tensor([0.5, 0.5], requires_grad=True)# 定义EM算法的迭代次数和收敛条件
num_iterations = 100
tolerance = 1e-6# EM算法
for iteration in range(num_iterations):# E步骤(Expectation)component_distributions = [Normal(estimated_means[i], estimated_stddevs[i])for i in range(num_components)]component_probs = torch.stack([component_distributions[i].log_prob(samples)for i in range(num_components)])log_likelihoods = torch.logsumexp(torch.log(estimated_weights.unsqueeze(1)) + component_probs, dim=0)log_component_probs = torch.log(estimated_weights.unsqueeze(1)) + component_probsresponsibilities = torch.exp(log_component_probs - log_likelihoods.unsqueeze(0))# M步骤(Maximization)estimated_weights = responsibilities.mean(dim=1)for i in range(num_components):estimated_means[i] = (responsibilities[i] * samples).sum() / responsibilities[i].sum()estimated_stddevs[i] = torch.sqrt((responsibilities[i] * (samples - estimated_means[i])**2).sum() / responsibilities[i].sum())# 计算对数似然函数值current_log_likelihood = log_likelihoods.mean()# 检查收敛条件if iteration > 0 and torch.abs(current_log_likelihood - previous_log_likelihood) < tolerance:breakprevious_log_likelihood = current_log_likelihood# 打印估计的参数值
print("Estimated means:", estimated_means)
print("Estimated stddevs:", estimated_stddevs)
print("Estimated weights:", estimated_weights)

这篇关于深度学习理论知识入门【EM算法、VAE算法、GAN算法】和【RBM算法、MCMC算法、HMC算法】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374265

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx