本文主要是介绍基于分位数回归的门控循环单元QRGRU时间序列区间预测。(主要应用于风速,负荷,功率)包含评价指标R2,MAE,MBE,区间覆盖率,区间平均宽度。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
kim = 8; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 创建网络
save_net = [];
for i = 0.02 : 0.05 : 0.97 % 置信区间范围 0.97 - 0.02 = 0.95
智能算法及其模型预测
这篇关于基于分位数回归的门控循环单元QRGRU时间序列区间预测。(主要应用于风速,负荷,功率)包含评价指标R2,MAE,MBE,区间覆盖率,区间平均宽度。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!