利用改进的YOLOv5模型对玉米和杂草进行精准检测和精准喷洒

2023-11-09 01:30

本文主要是介绍利用改进的YOLOv5模型对玉米和杂草进行精准检测和精准喷洒,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Accurate Detection and Precision Spraying of Corn and Weeds Using the Improved YOLOv5 Model

  • 摘要
  • 1、引言

摘要

本文提出了一种基于改进yolov5s的轻量化模型,并构建了一种精密喷涂机器人。
首先,采用基于品类平衡和农艺特征的数据增广方法解决了数据不平衡问题;然后,与yolov5s、yolov5l、yolov5m、yolov5x相比,我们发现yolov5s具有实时性和准确性,并且更容易将模型部署到边缘设备上。
通过特征地图可视化实验,我们发现特征提取网络不能密切关注目标的重要特征,抑制噪声特征。因此,我们添加了注意机制。
为了提高模型的实时性,我们设计了c3ghost -瓶颈模块。
最后,我们制作了一个精密喷涂机器人。
与原模型相比,map@0.5值增加了3.2%,模型文件减少了3.6 MB,玉米AP值从93.2%提高到96.3%,杂草AP值从85.6%提高到88.9%。最后,进行了杂草精确喷洒试验。
关键词:数据平衡,目标检测,精密喷涂机器人,SENet, yolov5s。

1、引言

喷药除草作业大多采用连续喷药的方法。虽然具有良好的除草效果,但大量喷洒农药不仅污染环境,还影响农作物的生长发育,而且容易产生农药残留[3]。精准施药是提高农药利用率的有效途径,而目标的准确识别和定位是实现精准施药技术的前提。
在早期,国内外许多学者利用植物叶片的形状特征、纹理特征、颜色特征和位置空间特征来识别农作物和杂草。Strand等人[19]利用植物形态特征,利用贝叶斯分类器对杂草进行分类,成功率为76.5%。
Strand等人[19]利用植物形态特征,利用贝叶斯分类器对杂草进行分类,成功率为76.5%。Li et al.[20]利用植物和土地的颜色特征对其进行分割,然后利用农作物和杂草的面积特征通过构造像素直方图对其进行分类。实验结果表明,玉米的识别率高于95%。Lanlan等[21]利用玉米和杂草的4个形状参数实现了支持向量机对玉米和杂草的识别,识别准确率达到了96.5%。Wu等人[22]利用纹理特征准确识别玉米和杂草,SVM分类器识别准确率在92.31% -100%之间。由于玉米和杂草的颜色相似,玉米叶片容易遮盖杂草的叶片,以及背景的复杂性,使用单一属性来区分作物和杂草是一项挑战。因此,许多研究者提出了一种用于目标识别的多特征融合策略。Mao等人的[23]利用颜色、位置、纹理和形态特征实现了对农作物和杂草的识别。Lin et al.[24]利用光谱成象器方法对叶片的纹理和形态数据进行合并,模型的识别精度达到95%。Chen et al.[25]利用Otsu阈值法将植物与背景区分开。根据玉米和杂草的叶片形状,采用概率神经网络方法对玉米和杂草进行区分。对玉米和杂草的识别率分别为92.5%和95%。
虽然传统的机器学习方法也可以有很好的识别效果,但由于野外环境复杂,杂草种类繁多,光照强度随时变化,传统方法缺乏较强的特征提取和泛化能力,导致传统方法对环境和杂草种类变化的适应性差。
与传统机器学习相比,深度学习利用卷积神经网络提取杂草的多尺度、多维空间语义特征信息,独立获取目标的有用特征,解决了传统方法提取杂草和作物特征的不足,有效提高了作物和杂草的识别和检测精度。
近年来,深度学习方法被广泛应用于农作物和杂草[26]的识别和定位。
Jiang et al.[27]利用图卷积神经网络对玉米和杂草进行识别,识别准确率达到97.8%。Andrea等人[28]利用cNET实时区分玉米和杂草,利用分割阶段生成的数据集训练卷积神经网络实现对玉米和杂草的识别。
Pei等[29]基于yolov4网络模型构建了智能除草机器人系统。
Cheng等[30]提出了一种改进的YOLOv4模型,用MobileNetv3替代CSPDarknet53网络,然后使用迁移学习来加速模型训练。
Quan等人利用VGG19作为基于Faster-R-CNN网络模型的预训练网络,对玉米幼苗的识别准确率达到97.71%。
出了一种改进的yolov5s目标检测模型。在特征提取阶段引入SENet注意机制,引导模型注意目标信息,提高了模型的目标识别性能。通过利用Ghost模块的轻量级优势,减少了模型的参数和计算量,我们创建了c3 -Ghost-瓶颈模块,以解决大量模型参数和计算量的问题。

这篇关于利用改进的YOLOv5模型对玉米和杂草进行精准检测和精准喷洒的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373440

相关文章

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

Python使用DrissionPage中ChromiumPage进行自动化网页操作

《Python使用DrissionPage中ChromiumPage进行自动化网页操作》DrissionPage作为一款轻量级且功能强大的浏览器自动化库,为开发者提供了丰富的功能支持,本文将使用Dri... 目录前言一、ChromiumPage基础操作1.初始化Drission 和 ChromiumPage

Jackson库进行JSON 序列化时遇到了无限递归(Infinite Recursion)的问题及解决方案

《Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursion)的问题及解决方案》使用Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursi... 目录解决方案‌1. 使用 @jsonIgnore 忽略一个方向的引用2. 使用 @JsonManagedR

使用Folium在Python中进行地图可视化的操作指南

《使用Folium在Python中进行地图可视化的操作指南》在数据分析和可视化领域,地图可视化是一项非常重要的技能,它能够帮助我们更直观地理解和展示地理空间数据,Folium是一个基于Python的地... 目录引言一、Folium简介与安装1. Folium简介2. 安装Folium二、基础使用1. 创建