能在ARM-CPU上实时识别图像的深度学习算法之yolo-fastest

2023-11-07 18:40

本文主要是介绍能在ARM-CPU上实时识别图像的深度学习算法之yolo-fastest,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

近期一直在寻找一种用CPU就可以快速识别图像的方法,从经典的特征匹配方式到后面的深度学习,过程涉及了sift、surf、tensorflow2、yolov4-tiny、nanodet、yolo-fastest。经过层层筛选,最后确定了yolo-fastest,官方称树莓派4b可以达30+fps官方地址。刚好有个树莓派在手上,于是决定试试。

官方预训练模型测试

下载官方源码Yolo-Fastest-master.zip,把源码放到树莓派,解压源码

unzip Yolo-Fastest-master.zip

进入源码目录,在编译之前先确定下树莓派的gcc/g++、opencv、python版本,我的环境:
gcc (Raspbian 8.3.0-6+rpi1) 8.3.0
Python 3.7.3
opencv 4.5.1 (最好是4.x版本以上的,因为后续要用到DNN模块)
说一下opencv 4.5.1的安装方法:
输入命令

pip3 install opencv-python

这个会默认安装最新版的opencv-python,因为国外的资源非常慢,最好是通过命令后显示的网址拷贝到迅雷下载,下载好后文件是,然后输入命令进行安装
opencv_python-4.5.1.48-cp37-cp37m-linux_armv7l.whl

pip3 install opencv_python-4.5.1.48-cp37-cp37m-linux_armv7l.whl

这个时候提示需要下载numpy,用同样的方法迅雷下载numpy后,再进行pip3安装,下载完后先安装numpy再安装opencv,如果安装过程遇到需要安装其他的库,用同样的方法下载后安装。

pip3 install numpy-1.19.5-cp37-cp37m-linux_armv7l.whl
pip3 install opencv_python-4.5.1.48-cp37-cp37m-linux_armv7l.whl

完成opencv的安装后,就可以进行yolo-fastest的编译,编译之前先修改下Makefile文件,一下是我的配置,只改了一个地方。
在这里插入图片描述
改好后保存,然后输命令

make

编译成功后,就会在目录下生成darknet文件,这个时候就可以进行测试了,输入命令:

sh image_yolov3.sh

注意,我示例是用的yolo-fastest-xl的权重,如果要用yolo-fastest的权重,需要修改下image_yolov3.sh脚本里的内容。
在这里插入图片描述
权重文件都在Yolo-Fastest文件夹里面
在这里插入图片描述

可以看到,官方的例子成功跑起来了,fastest-xl比fast好,我用fast测试的时候,图片里面狗被识别成了猫。但是耗时还是很高934毫秒?怎么回事???
不急,重新去官网看了资料,发现Darknet CPU推理效率优化不好,CPU建议使用NCNN
在这里插入图片描述
很明显,我们直接编译出来的是darknet框架,要想实时看来只能选NCNN或者MNN框架。因为之前没接触过NCNN和MNN,百度了下,是腾讯和阿里的基于arm的推理框架,可以把其他模型转成各自框架的模型,然后再去推理。也就说,你可以tflite、yolo等去训练,然后再转成NCNN/MNN模型,再通过NCNN/MNN方法去推理。

NCNN是nihui大佬在搞的一个框架,貌似只有c++,不支持python;而MNN是阿里的团队搞的,有python api也有c++ api。根据yolo-fastest官网的连接,在树莓派上都部署了MNN和NCNN,试了下速度,果然能达到40ms一张示例图。至于怎么部署MNN和NCNN可以到官网去了解,这个就不赘述了。贴张图
在这里插入图片描述

训练自己的数据

我的目的是测试自己训练的数据,看下识别率和处理速率。
关于训练,按官网说明进行
(1)下载yolov4的源码https://github.com/AlexeyAB/darknet[github地址],看官网关于训练的说明文档(https://github.com/AlexeyAB/darknet)
(2)按VOC的数据结构,准备好数据集,我只训练一个对象,准备了269张图片(640*480),目录结构如下
└── VOC2007
├── Annotations
│ └── data
├── ImageSets
│ ├── Layout
│ ├── Main
│ └── Segmentation
├── JPEGImages
└── labels
Annotations里面是通过labelImg软件生成的标注.xml文件
data文件夹可以不用
ImageSets里面的三个文件夹都不需要
JPEGImages文件夹是装的原始图片
labels是voc_label.py生成的txt文件,每个文件里面的内容大致如下

0 0.4609375 0.45625 0.328125 0.7541666666666667

还需要生成训练文件train.txt和测试文件test.txt,可以参考这个链接
https://blog.csdn.net/Creama_/article/details/106209388 yolov4训练
(3)按照官网生成yolo-fastest.conv.109文件
(4)创建obj.data、obj.names文件,并修改好内容
在这里插入图片描述

(5)修改配置文件yolo-fastest.cfg,主要修改[yolo]下的classes 和 挨着[yolo]上面的fitters。具体填写需要根据你的classes来填,我只改了3个地方,如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(6)改完后就可以进行训练了,我的是用虚拟机训练,8个小时训练完269张图片,效果还可以。

./darknet detector train obj.data yolo-fastest.cfg yolo-fastest.conv.109

(7)训练完成后会再backup的路劲下生成自己的权重文件,拷贝出来就可以用了。

测试

把训练好的.cfg和.weight及.names文件复制到树莓派,进行测试
本来要通过NCNN框架进行测试的,后面发现opencv4.x的DNN支持读取darknet训练的配置文件。
官方上有示例:https://blog.csdn.net/nihate/article/details/108670542 根据官方的这个示例,修改下自己的代码就可以运行了。视频检测的话60ms-100ms,够用了。
在这里插入图片描述

这篇关于能在ARM-CPU上实时识别图像的深度学习算法之yolo-fastest的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365553

相关文章

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

SpringBoot+Vue3整合SSE实现实时消息推送功能

《SpringBoot+Vue3整合SSE实现实时消息推送功能》在日常开发中,我们经常需要实现实时消息推送的功能,这篇文章将基于SpringBoot和Vue3来简单实现一个入门级的例子,下面小编就和大... 目录前言先大概介绍下SSE后端实现(SpringBoot)前端实现(vue3)1. 数据类型定义2.

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Java枚举类型深度详解

《Java枚举类型深度详解》Java的枚举类型(enum)是一种强大的工具,它不仅可以让你的代码更简洁、可读,而且通过类型安全、常量集合、方法重写和接口实现等特性,使得枚举在很多场景下都非常有用,本文... 目录前言1. enum关键字的使用:定义枚举类型什么是枚举类型?如何定义枚举类型?使用枚举类型:2.

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)