能在ARM-CPU上实时识别图像的深度学习算法之yolo-fastest

2023-11-07 18:40

本文主要是介绍能在ARM-CPU上实时识别图像的深度学习算法之yolo-fastest,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

近期一直在寻找一种用CPU就可以快速识别图像的方法,从经典的特征匹配方式到后面的深度学习,过程涉及了sift、surf、tensorflow2、yolov4-tiny、nanodet、yolo-fastest。经过层层筛选,最后确定了yolo-fastest,官方称树莓派4b可以达30+fps官方地址。刚好有个树莓派在手上,于是决定试试。

官方预训练模型测试

下载官方源码Yolo-Fastest-master.zip,把源码放到树莓派,解压源码

unzip Yolo-Fastest-master.zip

进入源码目录,在编译之前先确定下树莓派的gcc/g++、opencv、python版本,我的环境:
gcc (Raspbian 8.3.0-6+rpi1) 8.3.0
Python 3.7.3
opencv 4.5.1 (最好是4.x版本以上的,因为后续要用到DNN模块)
说一下opencv 4.5.1的安装方法:
输入命令

pip3 install opencv-python

这个会默认安装最新版的opencv-python,因为国外的资源非常慢,最好是通过命令后显示的网址拷贝到迅雷下载,下载好后文件是,然后输入命令进行安装
opencv_python-4.5.1.48-cp37-cp37m-linux_armv7l.whl

pip3 install opencv_python-4.5.1.48-cp37-cp37m-linux_armv7l.whl

这个时候提示需要下载numpy,用同样的方法迅雷下载numpy后,再进行pip3安装,下载完后先安装numpy再安装opencv,如果安装过程遇到需要安装其他的库,用同样的方法下载后安装。

pip3 install numpy-1.19.5-cp37-cp37m-linux_armv7l.whl
pip3 install opencv_python-4.5.1.48-cp37-cp37m-linux_armv7l.whl

完成opencv的安装后,就可以进行yolo-fastest的编译,编译之前先修改下Makefile文件,一下是我的配置,只改了一个地方。
在这里插入图片描述
改好后保存,然后输命令

make

编译成功后,就会在目录下生成darknet文件,这个时候就可以进行测试了,输入命令:

sh image_yolov3.sh

注意,我示例是用的yolo-fastest-xl的权重,如果要用yolo-fastest的权重,需要修改下image_yolov3.sh脚本里的内容。
在这里插入图片描述
权重文件都在Yolo-Fastest文件夹里面
在这里插入图片描述

可以看到,官方的例子成功跑起来了,fastest-xl比fast好,我用fast测试的时候,图片里面狗被识别成了猫。但是耗时还是很高934毫秒?怎么回事???
不急,重新去官网看了资料,发现Darknet CPU推理效率优化不好,CPU建议使用NCNN
在这里插入图片描述
很明显,我们直接编译出来的是darknet框架,要想实时看来只能选NCNN或者MNN框架。因为之前没接触过NCNN和MNN,百度了下,是腾讯和阿里的基于arm的推理框架,可以把其他模型转成各自框架的模型,然后再去推理。也就说,你可以tflite、yolo等去训练,然后再转成NCNN/MNN模型,再通过NCNN/MNN方法去推理。

NCNN是nihui大佬在搞的一个框架,貌似只有c++,不支持python;而MNN是阿里的团队搞的,有python api也有c++ api。根据yolo-fastest官网的连接,在树莓派上都部署了MNN和NCNN,试了下速度,果然能达到40ms一张示例图。至于怎么部署MNN和NCNN可以到官网去了解,这个就不赘述了。贴张图
在这里插入图片描述

训练自己的数据

我的目的是测试自己训练的数据,看下识别率和处理速率。
关于训练,按官网说明进行
(1)下载yolov4的源码https://github.com/AlexeyAB/darknet[github地址],看官网关于训练的说明文档(https://github.com/AlexeyAB/darknet)
(2)按VOC的数据结构,准备好数据集,我只训练一个对象,准备了269张图片(640*480),目录结构如下
└── VOC2007
├── Annotations
│ └── data
├── ImageSets
│ ├── Layout
│ ├── Main
│ └── Segmentation
├── JPEGImages
└── labels
Annotations里面是通过labelImg软件生成的标注.xml文件
data文件夹可以不用
ImageSets里面的三个文件夹都不需要
JPEGImages文件夹是装的原始图片
labels是voc_label.py生成的txt文件,每个文件里面的内容大致如下

0 0.4609375 0.45625 0.328125 0.7541666666666667

还需要生成训练文件train.txt和测试文件test.txt,可以参考这个链接
https://blog.csdn.net/Creama_/article/details/106209388 yolov4训练
(3)按照官网生成yolo-fastest.conv.109文件
(4)创建obj.data、obj.names文件,并修改好内容
在这里插入图片描述

(5)修改配置文件yolo-fastest.cfg,主要修改[yolo]下的classes 和 挨着[yolo]上面的fitters。具体填写需要根据你的classes来填,我只改了3个地方,如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(6)改完后就可以进行训练了,我的是用虚拟机训练,8个小时训练完269张图片,效果还可以。

./darknet detector train obj.data yolo-fastest.cfg yolo-fastest.conv.109

(7)训练完成后会再backup的路劲下生成自己的权重文件,拷贝出来就可以用了。

测试

把训练好的.cfg和.weight及.names文件复制到树莓派,进行测试
本来要通过NCNN框架进行测试的,后面发现opencv4.x的DNN支持读取darknet训练的配置文件。
官方上有示例:https://blog.csdn.net/nihate/article/details/108670542 根据官方的这个示例,修改下自己的代码就可以运行了。视频检测的话60ms-100ms,够用了。
在这里插入图片描述

这篇关于能在ARM-CPU上实时识别图像的深度学习算法之yolo-fastest的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365553

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音