累计概率分布、概率分布函数(概率质量函数、概率密度函数)、度量空间、负采样(Negative Sampling)

本文主要是介绍累计概率分布、概率分布函数(概率质量函数、概率密度函数)、度量空间、负采样(Negative Sampling),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里写自定义目录标题

  • 机器学习的基础知识
    • 累计概率分布
    • 概率分布函数
    • 度量空间
    • 负采样(Negative Sampling)
      • 基于分布的负采样(Distribution-based Negative Sampling):
      • 基于近邻的负采样(Neighbor-based Negative Sampling):

机器学习的基础知识

累计概率分布、概率分布函数(概率质量函数、概率密度函数)、度量空间、负采样(Negative Sampling)

累计概率分布

累计概率分布是指离散随机变量或连续随机变量的概率分布函数(Probability Distribution Function,简称PDF)在某个取值点之前的概率之和。

对于离散随机变量,累计概率分布函数(Cumulative Distribution Function,简称CDF)定义为在该点之前所有概率质量函数(Probability Mass Function,简称PMF)值的累加和。

对于连续随机变量,累计概率分布函数定义为在该点之前的概率密度函数(Probability Density Function,简称PDF)的积分。

以离散随机变量为例,设随机变量X具有概率质量函数P(X = x),则其累计概率分布函数F(x)定义为:

F(x) = P(X ≤ x) = ΣP(X = x’)

其中,x’为所有小于或等于x的可能取值。

以连续随机变量为例,设随机变量X具有概率密度函数f(x),则其累计概率分布函数F(x)定义为:

F(x) = P(X ≤ x) = ∫f(t)dt,积分从负无穷到x

累计概率分布函数提供了随机变量小于或等于某个特定值的概率。在统计学和概率论中,累计概率分布函数常用于计算随机变量的分位数、概率计算以及随机变量之间的比较等任务。

值得注意的是,累计概率分布函数的取值范围在[0, 1]之间,并且具有单调递增的性质。

概率分布函数

概率分布函数(Probability Distribution Function,简称PDF)是描述随机变量取值与其概率之间关系的函数。对于离散型随机变量,概率分布函数也被称为概率质量函数(Probability Mass Function,简称PMF)。对于连续型随机变量,概率分布函数也被称为概率密度函数(Probability Density Function,简称PDF)。

离散型随机变量的概率质量函数(PMF):
对于离散型随机变量X,其概率质量函数P(X = x)给出了X取特定值x的概率。概率质量函数满足以下性质:

非负性:P(X = x) ≥ 0
归一性:∑P(X = x) = 1,求和范围覆盖了所有可能的取值

连续型随机变量的概率密度函数(PDF):
对于连续型随机变量X,其概率密度函数f(x)描述了X落在某个区间内的概率密度。概率密度函数满足以下性质:

非负性:f(x) ≥ 0
归一性:∫f(x)dx = 1,积分范围覆盖了所有可能的取值

概率分布函数是概率质量函数(PMF)或概率密度函数(PDF)的累积函数。对于离散型随机变量,概率分布函数F(x)定义为X小于或等于x的概率之和。对于连续型随机变量,概率分布函数F(x)定义为X小于或等于x的概率密度之积分。

概率分布函数的性质:

非负性:概率分布函数的值始终非负,即F(x) ≥ 0。
单调性:概率分布函数是单调非减函数,即如果x1 ≤ x2,则F(x1) ≤ F(x2)。
归一性:概率分布函数在整个取值空间上的值范围是[0, 1],即F(-∞) = 0,F(+∞) = 1。

概率分布函数在统计学和概率论中起到重要的作用,可以用于计算随机变量的概率、期望、方差以及进行随机变量之间的比较等任务。常见的概率分布函数包括正态分布、均匀分布、二项分布、泊松分布等。

度量空间

度量空间(Metric Space)是数学中的一个概念,用于描述具有度量(Metric)的空间。度量是一种用于衡量空间中两个元素之间距离的函数。

在一个度量空间中,我们有一个集合X以及一个定义在X上的度量函数d,满足以下条件:

非负性:对于任意的x, y ∈ X,有d(x, y)0,并且当且仅当x = y时,d(x, y) = 0。
对称性:对于任意的x, y ∈ X,有d(x, y) = d(y, x)。
三角不等式:对于任意的x, y, z ∈ X,有d(x, z) ≤ d(x, y) + d(y, z)

度量空间中的度量函数可以理解为表示元素之间距离的度量方式。它可以是实数值的距离,也可以是其他形式的度量,如欧氏距离、曼哈顿距离等。度量函数的定义使我们能够在度量空间中进行距离的比较和分析。

度量空间的例子包括欧几里得空间(Euclidean Space)和离散度量空间。在欧几里得空间中,度量函数是欧氏距离,用于测量点之间的直线距离。在离散度量空间中,度量函数可以是汉明距离、编辑距离等,用于度量离散对象之间的差异。

度量空间的概念在数学、计算机科学和物理学等领域中有广泛的应用。它为我们提供了一种形式化的框架,用于研究和分析空间中的距离、连续性、收敛性等性质。

负采样(Negative Sampling)

负采样(Negative Sampling,负样本的采样方式)是一种用于优化训练过程的技术,常用于词嵌入模型(如Word2Vec)等自然语言处理任务中。负采样通过减少训练样本的数量和计算复杂度,提高了训练效率,同时仍能保持模型的性能。

在传统的词嵌入模型中,目标是学习每个单词的词向量表示,使得具有相似上下文的单词在向量空间中的距离更近。传统的训练过程中,需要对每个训练样本计算softmax概率分布,这对于大规模语料库来说计算量很大。

负采样通过将训练样本中的正例(目标单词及其上下文)与负例(目标单词与随机选择的其他单词)进行区分,从而减少了计算量。具体来说,对于每个训练样本,负采样会随机选择一些负例,数量通常远小于语料库中的所有单词,并将它们作为负样本,而不再考虑其他单词。

负采样的目标是调整模型参数,使得正例的得分高于负例的得分,从而更好地区分正例和负例。一种常见的负采样方法是使用二元逻辑回归模型,将目标单词与上下文的词向量作为输入,通过sigmoid函数将其转化为概率。正例的标签为1,负例的标签为0,模型的目标是最大化正例的概率、最小化负例的概率。

负采样的优点是能够降低计算复杂度,加快训练速度。此外,负采样还有助于将模型更专注于区分目标单词和上下文,提高了模型的性能。但是,负采样也引入了一定的偏差,因为负例是随机选择的,并不能保证完全涵盖语料库中的所有负例。

需要注意的是,负采样在不同任务和模型中的具体实现方式会有所不同。具体的选择和调整负采样的数量、采样策略等,需要根据实际情况和任务需求进行调整和优化。

除了二元逻辑回归模型,还有其他几种常用的负采样方式,下面列举其中两种。

基于分布的负采样(Distribution-based Negative Sampling):

这种负采样方式基于单词的频率分布来选择负例。具体步骤如下:

统计每个单词在语料库中的出现频次,并计算每个单词出现的概率。
根据单词的概率分布,随机选择负例。常用的选择方法是使用单词的概率分布的幂次进行采样,即根据频次的幂次对单词进行采样,出现频次较高的单词被选择为负例的概率较低,频次较低的单词被选择为负例的概率较高。

基于近邻的负采样(Neighbor-based Negative Sampling):

这种负采样方式基于单词的上下文关系来选择负例。具体步骤如下:

对于每个训练样本中的目标单词,选取其真实上下文单词。
对于每个上下文单词,从其上下文窗口中选择一部分单词作为负例。这些负例单词可以是随机选择的,也可以根据一定的概率分布进行选择。

这些负采样方式的选择取决于具体的任务和模型。不同的负采样方式可能适用于不同的应用场景,并且可能会对模型的性能产生不同的影响。因此,在实际应用中,可以尝试不同的负采样方式,并进行实验和比较,选择最适合的方式。

Alt

这篇关于累计概率分布、概率分布函数(概率质量函数、概率密度函数)、度量空间、负采样(Negative Sampling)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/361935

相关文章

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

Unity3D 运动之Move函数和translate

CharacterController.Move 移动 function Move (motion : Vector3) : CollisionFlags Description描述 A more complex move function taking absolute movement deltas. 一个更加复杂的运动函数,每次都绝对运动。 Attempts to

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^