本文主要是介绍航天飞行器:热防护系统低密度刚性隔热瓦高温导热系数测量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
摘要:针对空间飞行器热防护系统低密度刚性隔热瓦首先采用了瞬态平面热源法进行了常温常压下的导热系数测量,同时瞬态平面热源法也采用美国NIST标准参考试样SRM 1453进行了测量准确性的考核和验证。然后采用上海依阳实业有限公司的型号TC-HFM-1000高温热流计法导热系数测试系统对低密度刚性隔热瓦进行了试样热面温度达到1000℃、冷面温度不超过50℃的大温差条件下的导热系数测量,得到了一条完整的导热系数随温度变化测试曲线。通过这种高温大温差条件下的导热系数测试,可以更准确的了解刚性隔热瓦在更接近真实使用环境大温差条件下的隔热性能。
1.低密度刚性隔热瓦试样
为了解接近真实使用环境大温差条件下空间飞行器热防护系统中所使用的低密度刚性隔热瓦的隔热性能,送样单位送来试样拆封前后图片如图1-1和图1-2所示。
图1-1 包装试样
图1-2 拆封试样
分别对两块试样进行编号和尺寸及密度测量。
- 图1-3所示为1号试样,长宽厚分别为300×300×19.71mm,重量435g,密度0.25 g/cm3 。
- 图1-4所示为2号试样,长宽厚分别为300×300×16.82mm,重量445g,密度0.25 g/cm3 。
图1-3 低密度刚性隔热瓦1号试样
图1-4 低密度刚性隔热瓦2号试样
其中1号试样是经过1000℃高温试验后的尺寸和密度测量数据,与2号未经高温试验的密度相比,高温试验前后的密度基本未发生改变。
2.瞬态平面热源法测试
为了验证和考核低密度刚性隔热瓦导热系数测试的准确性,首先在常温常压下采用ISO 22007-2-2008 塑料-热传导率和热扩散率的测定.第2部分瞬时平面热源法,对导热系数与低密度刚性隔热瓦相同量级的美国NIST标准参考材料SRM 1453(发泡聚苯乙烯板)进行测试,以期实现以下目的:
(1)评测和验证瞬态平面热源法热导率测试系统的测量准确性,重点验证低导热材料(热导率0.03W/mK左右)测量的准确性,以保证低密度刚性隔热瓦常温常压下导热系数测量的准确性。
(2)NIST标准参考材料SRM 1453是一种典型的泡沫聚苯乙烯板,由于低密度和具有一定气孔率,所以这种材料的热导率会随真空度增高而减小。因此希望通过在不同真空度下测试SRM 1453的热导率,评估瞬态平面热源法热导率测试系统测量极低热导率(小于0.03W/mK)的能力。
(3)通过真空控制和真空腔提供变真空测试环境,在1E-04~1E+03Torr覆盖七个数量级的真空度变化范围内,测试NIST标准参考材料SRM 1453在不同真空度下的热导率,得到一条热导率随真空度变化的完整曲线,以期获得热导率随真空度变化的规律。
2.1. 测试美国NIST标准参考材料SRM 1453
2.1.1. 美国NIST标准参考材料SRM 1453
将购置的NIST标准材料材料SRM 1453切割成100mm见方的正方形,如图2-1所示。
2.1.2. 美国NIST标准参考材料SRM 1453导热系数标准数据
美国NIST标准参考材料SRM 1453(发泡聚苯乙烯板)导热系数数据不仅与温度有关,而且会随材料的密度发生变化,这里仅给出导热系数与温度和密度的关系式:λ=0.00111-0.0000424×ρ+0.000115×T
式中: ρ 表示体积密度,单位
2.1.3. 瞬态平面热源法测试SRM 1453导热系数
测试试样和测试卡具整体放置在如图2-2所示的真空腔内,如图2-3所示将被测的NIST标准材料材料SRM 1453放入测试卡具内,如图2-4所示试样和探测器压紧后关闭真空腔,然后进行真空度控制和导热系数测试。
图2-3 测试试样和测试卡具
图2-4 试样安装完毕后的待测状态
在NIST标准参考材料SRM 1453不同真空度下热导率测试过程中,首先在常温常压下进行测试,然后再逐渐提高真空度并进行真空度控制,真空度控制精度达到5‰,稳定性优于1%。每个真空度至少恒定半小时后再开始热导率测量,每个真空度下进行2次重复性测量,任何2次测量间隔至少30分钟以上。由于NIST标准参考材料SRM 1453比较薄,厚度为14mm,由此在测试中采用了小尺寸的探头,编号C5501。整个测试过程中,试样温度保持在室温范围内,温度范围为22℃~23℃。为了便于测量控制及描述,真空度单位采用Torr,测试结果如下表所示。表中的试验参数表示测试过程中的探头加热功率(豪瓦)和测试时间(秒)。
将以上测试结果绘制成横坐标为真空度、纵坐标为热导率的对数坐标曲线,如图2-5所示。
图2-5 美国NIST标准参考材料SRM 1453常温不同真空度下的热导率测试结果
2.1.4. 分析与结论
按照NIST所提供的SRM 1453热导率标准数据,在常温22℃的常压环境下,热导率标准数据为0.03348W/mK。
按照上述的测试结果,在常温22℃的常压环境下,多次热导率重复性测量测试结果范围为0.03226~0.03251 W/mK,偏差范围为2.90%~3.65%,完全处于±5%的误差范围内。
另外,从图2-5所示的测试结果可以看出,整个真空度变化范围内的热导率测试结果随真空度的升高而下降,整体规律呈现出指数形式。即在0.1~200Torr范围内,热导率随真空度变成呈指数关系,而在大于200Torr和小于0.1Torr的真空度范围内,热导率几乎不再发生变化,这完全符合气体热传导的规律。这也就意味着,这种材料的纯固体热导率为0.009W/mK左右,而其它传热则都是气体热传导和接触热阻的贡献。
通过以上测试结果和分析,可以得出以下结论:
(1)针对NIST标准参考材料SRM 1453的测试,验证了低温变真空材料热物理性能测试系统的热导率测试误差完全达到小于±5%的设计指标。
(2)整个测试系统空间环境的模拟,在 真空度范围内真空度可以精确定点控制在±1‰波动范围内。
(3)特别是通过真空环境下材料极低热导率的测试,证明瞬态平面热源法完全具备超低热导率测试能力,再一次验证了以往瞬态平面热源法隔热材料热导率测试结果经常比保护热板法偏大的原因,再一次证明国内绝大多数隔热材料超低热导率测试结果明显偏低很多,存在巨大的误差。
(4)此次测量并未采取任何措施降低试样与探测器接触热阻,因此从理论上来说,真实的热导率结果应该比测试结果还要略微偏大一些。
2.2. 常温常压下测试低密度刚性隔热瓦
将300×300mm见方的1号和2号低密度刚性隔热瓦试样夹持住瞬态平面热源法探头并采用两个铜块压紧。采用C5501探头进行测量,功率7mW,加热时间40s,室温22℃。探头分别放置在如图2-6所示试样上的四个边缘位置进行测量,每个位置重复测量2次,由此获得试样不同位置处的导热系数,取平均后得到这两个试样的导热系数平均值,测试结果如图2-6所示。
图2-6 低密度刚性隔热瓦试样不同测试位置示意图和热导率测试结果
3. 高温热流计法测试
高温导热系数测试采用了上海依阳实业有限公司生产的型号TC-HFM-1000高温热流计法导热系数测试系统,热流计法高温导热系数测试系统是业内第一台热流计法高温热导率测量装置,首次实现了1000℃以下防隔热材料的高温导热系数测量,同时在测量过程中还可以精确模拟气氛环境,全过程的获得材料导热系数随温度和气压变化的性能曲线。
热流计法高温导热系数测试系统依据GB 10295-2008标准测试方法,是一个标准的稳态法导热系数测试系统。当被测试样上下的热面和冷面在恒定温度状态下,在被测试样的中心区域和热流测量装置的中心区域会建立起类似于无限大平板中存在的单向稳态热流。通过测量热流密度、试样的热面和冷面温度以及试样厚度获得被测试样的等效导热系数。 热流计法高温导热系数测试系统如图3-1所示。
图3-1 型号TC-HFM-1000热流计法高温导热系数测试系统
将被测试样放入高温热流计法导热系数测试系统中,如图3-2所示。
图3-2 装入高温热流计法导热系数测试系统中的被测试样
针对低密度刚性隔热瓦1号试样进行测试。首先进行试样热面温度为300、500、700、900和1000℃共5个温度点下的常压下导热系数测试,水冷板由油浴恒定控制在10℃。但由于1000℃试验未完成,仅得到300、500、700和900℃下的测试结果,以下为各个测试结果曲线。
图3-3 整个试验过程中的试样热面温度随时间变化曲线
图3-4 整个试验过程中的试样冷面温度随时间变化曲线
图3-5整个试验过程中的试样厚度方向热流密度随时间变化曲线
下表是300、500、700和900℃下的试验结果列表:
针对低密度刚性隔热瓦1号试样进行测试,再进行试样热面温度为200、400、600、800和1000℃共5个温度点下的常压下导热系数测试,水冷板由油浴恒定控制在10℃,以下为各个测试结果曲线。
图3-6 整个试验过程中的试样热面温度随时间变化曲线
图3-7 整个试验过程中的试样冷面温度随时间变化曲线
图3-8 整个试验过程中的试样厚度方向热流密度随时间变化曲线
下表是200、400、600、800和1000℃下的试验结果列表:
将以上两次不同温度下的汇总后,得到200~1000℃范围内有效导热系数,如下表所示:
图3-9 低密度刚性隔热瓦高温有效热导率测试结果
4. 分析及结论
以上高温热流计法低密度刚性隔热瓦的导热系数测试是首次进行高温测试的结果,而且还是分为两次独立测试的结果。按照目前的测试程序,有可能会选择首先进行100、300、500、700、900和1000℃的升温过程测试以及800、600、400和200℃的降温过程测试。这样一个升降温过程可以得到一个完成的测试曲线,测试效率也较高。
对比图2-6和图3-9所示的瞬态平面热源法和高温热流计法测试结果,可以看出瞬态平面热源法的测试结果要比热流计法测试结果偏高约16%以上,这也是采用这两种方法测试其他隔热材料普遍存在的现象,分析可能是高温热流计法测试过程中,由于试样表面的不平整度和粗糙度造成测试过程中的接触热阻明显要比瞬态平面热源法测试中的要高,热流计法试样的测试结果中包含了试样的接触热阻,使得测试结果偏低。
这篇关于航天飞行器:热防护系统低密度刚性隔热瓦高温导热系数测量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!