Flink全链路延迟的测量方式和实现原理

2024-09-06 17:08

本文主要是介绍Flink全链路延迟的测量方式和实现原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标”

回复”面试“获取更多惊喜

0b061881aabb8a9e7f59ce098182eeca.png

本文已经加入「大数据成神之路PDF版」中提供下载。
你可以关注公众号,后台回复:PDF 即可获取。

一、背景

Flink Job端到端延迟是一个重要的指标,用来衡量Flink任务的整体性能和响应延迟(大部分流式应用,要求低延迟特性)。

通过流处理引擎竞品对比,我们发现大部分流计算引擎产品,都在告警监控页面,集成了全链路时延指标展示(直方图)。

一些低延时的处理场景,例如用于登陆、用户下单规则检测,实时预测场景,需要一个可度量的Metric指标,来实时观测、监控集群全链路时延情况。

二、源码分析来源

1、本文的源码分析基于Flink社区issue FLINK-3660,以及issue对应的pr源码pull-2386,另外,个人也新增了实现源码的说明。

2、其pr源码中只涉及到了部分全链路时延实现代码,因此,我在文章中总结了:

  • Source到Sink处理Latency Marker源码

  • LatencyMarksEmitter 提交时延标记类

  • LatencyStats(时延直方图Metric实现)源码

时延测量–整体架构图

三、腾讯Oceanus监控指标参考

如下图,红色框线对应的数据延时,即我们描述的指标

75b0268c7e04fbf799757be61a0ea4be.png b88093c73a73b4d18608fd0fc8dc1ffa.png
四、Flink LatencyMarker实现思路
  1. 实现方案变迁

在webinterface中,加入流式job的端到端延迟是一个重要特性。因此,Flink社区最初的想法是在每个记录的source上附加一个摄取时间(ingestion-time)时间戳。

然而,这为不使用monitor feature(监控功能)的用户,带来了额外开销(每个元素+每个元素上的System.currentTimeMilis()需要8个字节)。

因此,Flink社区最后决定,通过定期发送特殊事件来实现此功能,类似于通过拓扑发送水印watermark。

  1. 实现原理

这些特殊事件(LatencyMarker)在source上以可配置发送间隔,并由任务Task转发。Sink最后接收到LatencyMarks后,将比较LatencyMarker的时间戳与当前系统时间,以确定延迟。

LatencyMarker不会增加作业的延迟,但是LatencyMarker与常规记录类似,可以被delay阻塞(例如反压情况),因此LatencyMarker的延迟与Record延迟近似。

  1. 节点间时钟偏移及准确性

当前方案期望所有任务管理器TaskManager上的时钟是同步的。否则,测量的延迟也包括TaskManager时钟之间的偏移。

后续,我们可以尝试通过使用JobManager作为计时服务中心(central timing service)来缓解这个问题。taskmanager将定期查询JM的当前时间,以确定其时钟的偏移量。

这个偏移量仍然包括TM和JM之间的网络延迟,但是仍然比较好的测量时延。

五、Flink LatencyMarker实现源码

本章节对应到pr源码pull-2386的实现,这里简要说明。

dda64f736732fd3a70e333e8117f577d.png
  1. 实现基础类及下发标记

Flink源码中,引入了一个新的StreamElement,称为LatencyMarker。

与水印类似,LatencyMarker按配置的间隔从源发出。这个时间间隔的默认值是0毫秒,即不触发(配置项在ExecutionConfig#latencyTrackingInterval,名称metrics.latency.interval),例如可以配置成2000毫秒触发一次LatencyMarker发送。

LatencyMarker不能“多于”常规元素。这确保了测量的延迟接近于常规流元素的端到端延迟。

常规操作符Operator(不包括那些参与迭代的Operator)如果不是sink,就会转发延迟标记LatencyMarker。

  1. 多输出通道—随机下发标记

具有多个输出channel的Operator,随机选择一个channel通道,将LatencyMarker发送给它。这可以确保每个LatencyMarker标记在系统中只存在一次,并且重新分区步骤不会导致传输的LatencyMarker数量激增。

public class RecordWriterOutput{@Overridepublic void emitLatencyMarker(LatencyMarker latencyMarker) {serializationDelegate.setInstance(latencyMarker);try {// 内部实现了随机选择通道recordWriter.randomEmit(serializationDelegate);}catch (Exception e) {throw new RuntimeException(e.getMessage(), e);}}
}

上述RecordWriterOutput#emitLatencyMarker()会被StreamSource、AbstractStreamOperator调用,分别实现source和中间operator的延迟标记下发。

如果操作符Operator是Sink,它将维护每个已知source实例的最后128个LatencyMarker信息。

  1. Metric展示

每个已知source的最小/最大/平均值/p50/p95/p99时延,在sink的LatencyStats对象中,进行汇总(如果没有任何输出的Operator,就是是sink)。

本pr只涉及全链路延迟统计的实现,Flink已有一整套Metric显示体系,全链路时延Metric展示交给Flink框架本身)。

此外,目前还没有确保系统时钟同步的机制,因此如果硬件时钟不正确,则延迟测量将不准确。

六、时延粒度Granularity说明
  1. 时延粒度–概念说明

任意一个中间Operator或Sink,可以通过配置metrics.latency.granularity项,调整与Source间统计的粒度(Singe、Operator、Subtask):

A、统计的时候,可以选择source源id、source源subtask index进行组合,调整统计粒度。

B、统计的时候,当前Operator及当前Operator subtask index总是参与粒度名称的生成,固定的。

  1. 三种时延跟踪策略及其源码定义

Single - 跟踪延迟,无需区分:源+源子任务:

(例如双流Join的两个source,这里都默认为一个数据源了)

SINGLE {String createUniqueHistogramName(LatencyMarker marker, OperatorID operatorId, int operatorSubtaskIndex) {// 只有自己的operatorId和operatorSubtaskIndex参与Metric名称生成// LatencyMarker带有的id(源)不参与Metric名称生成return String.valueOf(operatorId) + operatorSubtaskIndex;}}

Operator - 跟踪延迟,区分源,但不区分源的子任务:

OPERATOR {String createUniqueHistogramName(LatencyMarker marker, OperatorID operatorId, int operatorSubtaskIndex) {// LatencyMarker带有的id(源)中id参与计算return String.valueOf(marker.getOperatorId()) + operatorId + operatorSubtaskIndex;}}

Subtask - 跟踪延迟,区分源+源子任务:

SUBTASK {String createUniqueHistogramName(LatencyMarker marker, OperatorID operatorId, int operatorSubtaskIndex) {return String.valueOf(marker.getOperatorId()) + marker.getSubtaskIndex() + operatorId + operatorSubtaskIndex;}}

根据上述不同的名称key,将直方图对象放入Map中,Map定义:

Map<String, DescriptiveStatisticsHistogram> latencyStats = new HashMap<>()
伪代码(创建直方图):
latencyHistogram = new DescriptiveStatisticsHistogram(this.historySize);
this.latencyStats.put(uniqueName, latencyHistogram);伪代码(更新直方图):
long now = System.currentTimeMillis();
latencyHistogram.update(now - marker.getMarkedTime())
  1. Single、Operator、Subtask时延策略在Web Metric中的体现

上述Single、Operator 、Subtask不同测试,生成的Metric名称和group就会产生变化,Web Metric中名称相应改变

一个Subtask时延粒度的Metric路径:

Job_<source_id><source_subtask_index><operator_id>_<operator_subtask_index> .latency
七、总结说明
  1. LatencyMarker不参与window、MiniBatch的缓存计时,直接被中间Operator下发。

  2. Metric路径:TaskManagerJobMetricGroup/operator_id/operator_subtask_index/latency(根据时延配置粒度Granularity,路径会有变化,参考本文第六章节)

  3. 每个中间Operator、以及Sink都会统计自己与Source节点的链路延迟,我们在监控页面,一般展示Source至Sink链路延迟。

  4. 延迟粒度细分到Task,可以用来排查哪台机器的Task时延偏高,进行对比和运维排查。

  5. 从实现原理来看,发送时延标记间隔配置大一些(例如20秒一次),一般不会影响系统处理业务数据的性能(所有的StreamSource Task都按间隔发送时延标记,中间节点有多个输出通道的,随机选择一个通道下发,不会复制多份数据出来)。

参考原文:https://blog.csdn.net/LS_ice/article/details/103295774


《大数据成神之路》正在全面PDF化。

你只需要关注并在后台回复「PDF」就可以看到阿里云盘下载链接了!

另外我把发表过的文章按照体系全部整理好了。现在你可以在后台方便的进行查找:

3f3705feb9d6a49e415911fdcb6ab5fb.png649d24ea0c59f06dd549b717db689621.png

电子版把他们分类做成了下面这个样子,并且放在了阿里云盘提供下载。

30eb9e426d44d1e93fbae4adf7e7c1fa.png

我们点开一个文件夹后:

3d9b17ba137b355073b42e51677a4b2e.png

如果这个文章对你有帮助,不要忘记 「在看」 「点赞」 「收藏」 三连啊喂!

Hi,我是王知无,一个大数据领域的原创作者。 

放心关注我,获取更多行业的一手消息。

37e86f51cbcb6caa2a4c35e798c4510e.png

571c935c02dfe324f52e12cdcaac6d0c.png

2022年全网首发|大数据专家级技能模型与学习指南(胜天半子篇)

互联网最坏的时代可能真的来了

我在B站读大学,大数据专业

我们在学习Flink的时候,到底在学习什么?

193篇文章暴揍Flink,这个合集你需要关注一下

Flink生产环境TOP难题与优化,阿里巴巴藏经阁YYDS

Flink CDC我吃定了耶稣也留不住他!| Flink CDC线上问题小盘点

我们在学习Spark的时候,到底在学习什么?

在所有Spark模块中,我愿称SparkSQL为最强!

硬刚Hive | 4万字基础调优面试小总结

数据治理方法论和实践小百科全书

标签体系下的用户画像建设小指南

4万字长文 | ClickHouse基础&实践&调优全视角解析

【面试&个人成长】2021年过半,社招和校招的经验之谈

大数据方向另一个十年开启 |《硬刚系列》第一版完结

我写过的关于成长/面试/职场进阶的文章

当我们在学习Hive的时候在学习什么?「硬刚Hive续集」

这篇关于Flink全链路延迟的测量方式和实现原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142607

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P