深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测

本文主要是介绍深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性回归之ESOL数据集水溶性预测

  • 一、前言
  • 二、ESOL数据集
  • 三、加载数据集
  • 四、数据拆分
  • 五、构造模型
  • 六、训练模型
  • 七、测试结果
  • 八、分类问题
  • 参考文献

一、前言

本文旨在使用化合物分子的SMILES字符串进行数据模型训练,对其水溶性的值进行预测。

之前的文章《深度学习 GNN图神经网络(三)模型思想及文献分类案例实战》引用的Cora数据集只有一张图,属于图神经网络的节点分类问题。本文介绍的是多图批量训练的线性回归问题,在文章最后也讨论了图分类问题。

二、ESOL数据集

本文使用的是ESOL数据集,在文章《如何将化学分子SMILES字符串转化为Pytorch图数据结构——ESOL分子水溶性数据集解析》中有详细介绍,在此不作详述。

三、加载数据集

from torch_geometric.datasets import MoleculeNetdataset = MoleculeNet(root="data", name="ESOL")print('num_features:',dataset.num_features)
print('num_classes:',dataset.num_classes)
print('num_node_features',dataset.num_node_features)
print("size:", len(dataset))d=dataset[10]
print("Sample:", d)
print("Sample y:", d.y)
print("Sample num_nodes:",d.num_nodes)
print("Sample num_edges:",d.num_edges)

这里可以得到数据集的一些基本信息:

num_features: 9
num_classes: 734
num_node_features 9
size: 1128
Sample: Data(x=[6, 9], edge_index=[2, 12], edge_attr=[12, 3], smiles='O=C1CCCN1', y=[1, 1])
Sample y: tensor([[1.0700]])
Sample num_nodes: 6
Sample num_edges: 12

四、数据拆分

将数据集拆分为训练数据和测试数据:

from torch_geometric.loader import DataLoader
data_size = len(dataset)
batch_size = 128
train_data=dataset[:int(data_size*0.8)]
test_data=dataset[int(data_size*0.8):]train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_data, batch_size=len(test_data))

五、构造模型

import torch
import torch.nn as nn
from torch_geometric.nn import GCNConv
import matplotlib.pyplot as plt
from torch_geometric.nn import global_mean_pooldevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")hidden_channels = 64class GNN(nn.Module):def __init__(self):# 初始化Pytorch父类super().__init__()self.conv1=GCNConv(dataset.num_node_features, hidden_channels)self.conv2=GCNConv(hidden_channels, hidden_channels)self.conv3 = GCNConv(hidden_channels, hidden_channels)self.conv4 = GCNConv(hidden_channels, hidden_channels)self.out = nn.Linear(hidden_channels, 1)# 创建损失函数,使用均方误差self.loss_function = nn.MSELoss()# 创建优化器,使用Adam梯度下降self.optimiser = torch.optim.Adam(self.parameters(), lr=0.005,weight_decay=5e-4)# 训练次数计数器self.counter = 0# 训练过程中损失值记录self.progress = []# 前向传播函数def forward(self, x, edge_index,batch):x=x.to(device)edge_index=edge_index.to(device)batch=batch.to(device)x=self.conv1(x, edge_index)x=x.relu()x=self.conv2(x, edge_index)x=x.relu()x=self.conv3(x, edge_index)x=x.relu()x=self.conv4(x, edge_index)x=x.relu()# 全局池化x = global_mean_pool(x, batch)  # [x, batch]out=self.out(x)return out# 训练函数def train(self, data):# 前向传播计算,获得网络输出outputs = self.forward(data.x.float(),data.edge_index,data.batch)# 计算损失值y=data.y.to(device)loss = self.loss_function(outputs, y)# 累加训练次数self.counter += 1# 每10次训练记录损失值if (self.counter % 10 == 0):self.progress.append(loss.item())# 每1000次输出训练次数   if (self.counter % 1000 == 0):print(f"counter={self.counter}, loss={loss.item()}")# 梯度清零, 反向传播, 更新权重self.optimiser.zero_grad()loss.backward()self.optimiser.step()# 测试函数def test(self, data):# 前向传播计算,获得网络输出outputs = self.forward(data.x.float(),data.edge_index,data.batch)# 把绝对值误差小于1的视为正确,计算准确度y=data.y.to(device)acc=sum(torch.abs(y-outputs)<1)/len(data.y)return acc# 绘制损失变化图def plot_progress(self):plt.plot(range(len(self.progress)),self.progress)

六、训练模型

model = GNN()
model.to(device)for i in range(1001):for data in train_loader:# print(data,'num_graphs:',data.num_graphs)model.train(data)
counter=1000, loss=1.4304862022399902
counter=2000, loss=0.9842458963394165
counter=3000, loss=0.27240827679634094
counter=4000, loss=0.23295772075653076
counter=5000, loss=0.38499030470848083
counter=6000, loss=1.470423698425293
counter=7000, loss=0.845589816570282
counter=8000, loss=0.15707021951675415

绘制损失值变化图::

model.plot_progress()

在这里插入图片描述

七、测试结果

#torch.set_printoptions(precision=4,sci_mode=False) #pytorch不使用科学计数法显示for data in test_loader:acc=model.test(data)print(acc)
tensor([0.8186], device='cuda:0')

可以看到,预测值误差小于1的占了81.86%,效果还行。

八、分类问题

对于图分类问题,其实也差不多。只需要修改下Linear网络层:

self.out = Linear(hidden_channels, dataset.num_classes)

这样预测结果就会有num_classes个,取最大值的下标索引即可。
伪代码为:

pred=outputs.argmax(dim=1)
correct += int((pred == data.y).sum())

参考文献

[1] https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html
[2] https://zhuanlan.zhihu.com/p/504978470

这篇关于深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/337187

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片