深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测

本文主要是介绍深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性回归之ESOL数据集水溶性预测

  • 一、前言
  • 二、ESOL数据集
  • 三、加载数据集
  • 四、数据拆分
  • 五、构造模型
  • 六、训练模型
  • 七、测试结果
  • 八、分类问题
  • 参考文献

一、前言

本文旨在使用化合物分子的SMILES字符串进行数据模型训练,对其水溶性的值进行预测。

之前的文章《深度学习 GNN图神经网络(三)模型思想及文献分类案例实战》引用的Cora数据集只有一张图,属于图神经网络的节点分类问题。本文介绍的是多图批量训练的线性回归问题,在文章最后也讨论了图分类问题。

二、ESOL数据集

本文使用的是ESOL数据集,在文章《如何将化学分子SMILES字符串转化为Pytorch图数据结构——ESOL分子水溶性数据集解析》中有详细介绍,在此不作详述。

三、加载数据集

from torch_geometric.datasets import MoleculeNetdataset = MoleculeNet(root="data", name="ESOL")print('num_features:',dataset.num_features)
print('num_classes:',dataset.num_classes)
print('num_node_features',dataset.num_node_features)
print("size:", len(dataset))d=dataset[10]
print("Sample:", d)
print("Sample y:", d.y)
print("Sample num_nodes:",d.num_nodes)
print("Sample num_edges:",d.num_edges)

这里可以得到数据集的一些基本信息:

num_features: 9
num_classes: 734
num_node_features 9
size: 1128
Sample: Data(x=[6, 9], edge_index=[2, 12], edge_attr=[12, 3], smiles='O=C1CCCN1', y=[1, 1])
Sample y: tensor([[1.0700]])
Sample num_nodes: 6
Sample num_edges: 12

四、数据拆分

将数据集拆分为训练数据和测试数据:

from torch_geometric.loader import DataLoader
data_size = len(dataset)
batch_size = 128
train_data=dataset[:int(data_size*0.8)]
test_data=dataset[int(data_size*0.8):]train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_data, batch_size=len(test_data))

五、构造模型

import torch
import torch.nn as nn
from torch_geometric.nn import GCNConv
import matplotlib.pyplot as plt
from torch_geometric.nn import global_mean_pooldevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")hidden_channels = 64class GNN(nn.Module):def __init__(self):# 初始化Pytorch父类super().__init__()self.conv1=GCNConv(dataset.num_node_features, hidden_channels)self.conv2=GCNConv(hidden_channels, hidden_channels)self.conv3 = GCNConv(hidden_channels, hidden_channels)self.conv4 = GCNConv(hidden_channels, hidden_channels)self.out = nn.Linear(hidden_channels, 1)# 创建损失函数,使用均方误差self.loss_function = nn.MSELoss()# 创建优化器,使用Adam梯度下降self.optimiser = torch.optim.Adam(self.parameters(), lr=0.005,weight_decay=5e-4)# 训练次数计数器self.counter = 0# 训练过程中损失值记录self.progress = []# 前向传播函数def forward(self, x, edge_index,batch):x=x.to(device)edge_index=edge_index.to(device)batch=batch.to(device)x=self.conv1(x, edge_index)x=x.relu()x=self.conv2(x, edge_index)x=x.relu()x=self.conv3(x, edge_index)x=x.relu()x=self.conv4(x, edge_index)x=x.relu()# 全局池化x = global_mean_pool(x, batch)  # [x, batch]out=self.out(x)return out# 训练函数def train(self, data):# 前向传播计算,获得网络输出outputs = self.forward(data.x.float(),data.edge_index,data.batch)# 计算损失值y=data.y.to(device)loss = self.loss_function(outputs, y)# 累加训练次数self.counter += 1# 每10次训练记录损失值if (self.counter % 10 == 0):self.progress.append(loss.item())# 每1000次输出训练次数   if (self.counter % 1000 == 0):print(f"counter={self.counter}, loss={loss.item()}")# 梯度清零, 反向传播, 更新权重self.optimiser.zero_grad()loss.backward()self.optimiser.step()# 测试函数def test(self, data):# 前向传播计算,获得网络输出outputs = self.forward(data.x.float(),data.edge_index,data.batch)# 把绝对值误差小于1的视为正确,计算准确度y=data.y.to(device)acc=sum(torch.abs(y-outputs)<1)/len(data.y)return acc# 绘制损失变化图def plot_progress(self):plt.plot(range(len(self.progress)),self.progress)

六、训练模型

model = GNN()
model.to(device)for i in range(1001):for data in train_loader:# print(data,'num_graphs:',data.num_graphs)model.train(data)
counter=1000, loss=1.4304862022399902
counter=2000, loss=0.9842458963394165
counter=3000, loss=0.27240827679634094
counter=4000, loss=0.23295772075653076
counter=5000, loss=0.38499030470848083
counter=6000, loss=1.470423698425293
counter=7000, loss=0.845589816570282
counter=8000, loss=0.15707021951675415

绘制损失值变化图::

model.plot_progress()

在这里插入图片描述

七、测试结果

#torch.set_printoptions(precision=4,sci_mode=False) #pytorch不使用科学计数法显示for data in test_loader:acc=model.test(data)print(acc)
tensor([0.8186], device='cuda:0')

可以看到,预测值误差小于1的占了81.86%,效果还行。

八、分类问题

对于图分类问题,其实也差不多。只需要修改下Linear网络层:

self.out = Linear(hidden_channels, dataset.num_classes)

这样预测结果就会有num_classes个,取最大值的下标索引即可。
伪代码为:

pred=outputs.argmax(dim=1)
correct += int((pred == data.y).sum())

参考文献

[1] https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html
[2] https://zhuanlan.zhihu.com/p/504978470

这篇关于深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/337187

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2