深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测

本文主要是介绍深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性回归之ESOL数据集水溶性预测

  • 一、前言
  • 二、ESOL数据集
  • 三、加载数据集
  • 四、数据拆分
  • 五、构造模型
  • 六、训练模型
  • 七、测试结果
  • 八、分类问题
  • 参考文献

一、前言

本文旨在使用化合物分子的SMILES字符串进行数据模型训练,对其水溶性的值进行预测。

之前的文章《深度学习 GNN图神经网络(三)模型思想及文献分类案例实战》引用的Cora数据集只有一张图,属于图神经网络的节点分类问题。本文介绍的是多图批量训练的线性回归问题,在文章最后也讨论了图分类问题。

二、ESOL数据集

本文使用的是ESOL数据集,在文章《如何将化学分子SMILES字符串转化为Pytorch图数据结构——ESOL分子水溶性数据集解析》中有详细介绍,在此不作详述。

三、加载数据集

from torch_geometric.datasets import MoleculeNetdataset = MoleculeNet(root="data", name="ESOL")print('num_features:',dataset.num_features)
print('num_classes:',dataset.num_classes)
print('num_node_features',dataset.num_node_features)
print("size:", len(dataset))d=dataset[10]
print("Sample:", d)
print("Sample y:", d.y)
print("Sample num_nodes:",d.num_nodes)
print("Sample num_edges:",d.num_edges)

这里可以得到数据集的一些基本信息:

num_features: 9
num_classes: 734
num_node_features 9
size: 1128
Sample: Data(x=[6, 9], edge_index=[2, 12], edge_attr=[12, 3], smiles='O=C1CCCN1', y=[1, 1])
Sample y: tensor([[1.0700]])
Sample num_nodes: 6
Sample num_edges: 12

四、数据拆分

将数据集拆分为训练数据和测试数据:

from torch_geometric.loader import DataLoader
data_size = len(dataset)
batch_size = 128
train_data=dataset[:int(data_size*0.8)]
test_data=dataset[int(data_size*0.8):]train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_data, batch_size=len(test_data))

五、构造模型

import torch
import torch.nn as nn
from torch_geometric.nn import GCNConv
import matplotlib.pyplot as plt
from torch_geometric.nn import global_mean_pooldevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")hidden_channels = 64class GNN(nn.Module):def __init__(self):# 初始化Pytorch父类super().__init__()self.conv1=GCNConv(dataset.num_node_features, hidden_channels)self.conv2=GCNConv(hidden_channels, hidden_channels)self.conv3 = GCNConv(hidden_channels, hidden_channels)self.conv4 = GCNConv(hidden_channels, hidden_channels)self.out = nn.Linear(hidden_channels, 1)# 创建损失函数,使用均方误差self.loss_function = nn.MSELoss()# 创建优化器,使用Adam梯度下降self.optimiser = torch.optim.Adam(self.parameters(), lr=0.005,weight_decay=5e-4)# 训练次数计数器self.counter = 0# 训练过程中损失值记录self.progress = []# 前向传播函数def forward(self, x, edge_index,batch):x=x.to(device)edge_index=edge_index.to(device)batch=batch.to(device)x=self.conv1(x, edge_index)x=x.relu()x=self.conv2(x, edge_index)x=x.relu()x=self.conv3(x, edge_index)x=x.relu()x=self.conv4(x, edge_index)x=x.relu()# 全局池化x = global_mean_pool(x, batch)  # [x, batch]out=self.out(x)return out# 训练函数def train(self, data):# 前向传播计算,获得网络输出outputs = self.forward(data.x.float(),data.edge_index,data.batch)# 计算损失值y=data.y.to(device)loss = self.loss_function(outputs, y)# 累加训练次数self.counter += 1# 每10次训练记录损失值if (self.counter % 10 == 0):self.progress.append(loss.item())# 每1000次输出训练次数   if (self.counter % 1000 == 0):print(f"counter={self.counter}, loss={loss.item()}")# 梯度清零, 反向传播, 更新权重self.optimiser.zero_grad()loss.backward()self.optimiser.step()# 测试函数def test(self, data):# 前向传播计算,获得网络输出outputs = self.forward(data.x.float(),data.edge_index,data.batch)# 把绝对值误差小于1的视为正确,计算准确度y=data.y.to(device)acc=sum(torch.abs(y-outputs)<1)/len(data.y)return acc# 绘制损失变化图def plot_progress(self):plt.plot(range(len(self.progress)),self.progress)

六、训练模型

model = GNN()
model.to(device)for i in range(1001):for data in train_loader:# print(data,'num_graphs:',data.num_graphs)model.train(data)
counter=1000, loss=1.4304862022399902
counter=2000, loss=0.9842458963394165
counter=3000, loss=0.27240827679634094
counter=4000, loss=0.23295772075653076
counter=5000, loss=0.38499030470848083
counter=6000, loss=1.470423698425293
counter=7000, loss=0.845589816570282
counter=8000, loss=0.15707021951675415

绘制损失值变化图::

model.plot_progress()

在这里插入图片描述

七、测试结果

#torch.set_printoptions(precision=4,sci_mode=False) #pytorch不使用科学计数法显示for data in test_loader:acc=model.test(data)print(acc)
tensor([0.8186], device='cuda:0')

可以看到,预测值误差小于1的占了81.86%,效果还行。

八、分类问题

对于图分类问题,其实也差不多。只需要修改下Linear网络层:

self.out = Linear(hidden_channels, dataset.num_classes)

这样预测结果就会有num_classes个,取最大值的下标索引即可。
伪代码为:

pred=outputs.argmax(dim=1)
correct += int((pred == data.y).sum())

参考文献

[1] https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html
[2] https://zhuanlan.zhihu.com/p/504978470

这篇关于深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/337187

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则