深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测

本文主要是介绍深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性回归之ESOL数据集水溶性预测

  • 一、前言
  • 二、ESOL数据集
  • 三、加载数据集
  • 四、数据拆分
  • 五、构造模型
  • 六、训练模型
  • 七、测试结果
  • 八、分类问题
  • 参考文献

一、前言

本文旨在使用化合物分子的SMILES字符串进行数据模型训练,对其水溶性的值进行预测。

之前的文章《深度学习 GNN图神经网络(三)模型思想及文献分类案例实战》引用的Cora数据集只有一张图,属于图神经网络的节点分类问题。本文介绍的是多图批量训练的线性回归问题,在文章最后也讨论了图分类问题。

二、ESOL数据集

本文使用的是ESOL数据集,在文章《如何将化学分子SMILES字符串转化为Pytorch图数据结构——ESOL分子水溶性数据集解析》中有详细介绍,在此不作详述。

三、加载数据集

from torch_geometric.datasets import MoleculeNetdataset = MoleculeNet(root="data", name="ESOL")print('num_features:',dataset.num_features)
print('num_classes:',dataset.num_classes)
print('num_node_features',dataset.num_node_features)
print("size:", len(dataset))d=dataset[10]
print("Sample:", d)
print("Sample y:", d.y)
print("Sample num_nodes:",d.num_nodes)
print("Sample num_edges:",d.num_edges)

这里可以得到数据集的一些基本信息:

num_features: 9
num_classes: 734
num_node_features 9
size: 1128
Sample: Data(x=[6, 9], edge_index=[2, 12], edge_attr=[12, 3], smiles='O=C1CCCN1', y=[1, 1])
Sample y: tensor([[1.0700]])
Sample num_nodes: 6
Sample num_edges: 12

四、数据拆分

将数据集拆分为训练数据和测试数据:

from torch_geometric.loader import DataLoader
data_size = len(dataset)
batch_size = 128
train_data=dataset[:int(data_size*0.8)]
test_data=dataset[int(data_size*0.8):]train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_data, batch_size=len(test_data))

五、构造模型

import torch
import torch.nn as nn
from torch_geometric.nn import GCNConv
import matplotlib.pyplot as plt
from torch_geometric.nn import global_mean_pooldevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")hidden_channels = 64class GNN(nn.Module):def __init__(self):# 初始化Pytorch父类super().__init__()self.conv1=GCNConv(dataset.num_node_features, hidden_channels)self.conv2=GCNConv(hidden_channels, hidden_channels)self.conv3 = GCNConv(hidden_channels, hidden_channels)self.conv4 = GCNConv(hidden_channels, hidden_channels)self.out = nn.Linear(hidden_channels, 1)# 创建损失函数,使用均方误差self.loss_function = nn.MSELoss()# 创建优化器,使用Adam梯度下降self.optimiser = torch.optim.Adam(self.parameters(), lr=0.005,weight_decay=5e-4)# 训练次数计数器self.counter = 0# 训练过程中损失值记录self.progress = []# 前向传播函数def forward(self, x, edge_index,batch):x=x.to(device)edge_index=edge_index.to(device)batch=batch.to(device)x=self.conv1(x, edge_index)x=x.relu()x=self.conv2(x, edge_index)x=x.relu()x=self.conv3(x, edge_index)x=x.relu()x=self.conv4(x, edge_index)x=x.relu()# 全局池化x = global_mean_pool(x, batch)  # [x, batch]out=self.out(x)return out# 训练函数def train(self, data):# 前向传播计算,获得网络输出outputs = self.forward(data.x.float(),data.edge_index,data.batch)# 计算损失值y=data.y.to(device)loss = self.loss_function(outputs, y)# 累加训练次数self.counter += 1# 每10次训练记录损失值if (self.counter % 10 == 0):self.progress.append(loss.item())# 每1000次输出训练次数   if (self.counter % 1000 == 0):print(f"counter={self.counter}, loss={loss.item()}")# 梯度清零, 反向传播, 更新权重self.optimiser.zero_grad()loss.backward()self.optimiser.step()# 测试函数def test(self, data):# 前向传播计算,获得网络输出outputs = self.forward(data.x.float(),data.edge_index,data.batch)# 把绝对值误差小于1的视为正确,计算准确度y=data.y.to(device)acc=sum(torch.abs(y-outputs)<1)/len(data.y)return acc# 绘制损失变化图def plot_progress(self):plt.plot(range(len(self.progress)),self.progress)

六、训练模型

model = GNN()
model.to(device)for i in range(1001):for data in train_loader:# print(data,'num_graphs:',data.num_graphs)model.train(data)
counter=1000, loss=1.4304862022399902
counter=2000, loss=0.9842458963394165
counter=3000, loss=0.27240827679634094
counter=4000, loss=0.23295772075653076
counter=5000, loss=0.38499030470848083
counter=6000, loss=1.470423698425293
counter=7000, loss=0.845589816570282
counter=8000, loss=0.15707021951675415

绘制损失值变化图::

model.plot_progress()

在这里插入图片描述

七、测试结果

#torch.set_printoptions(precision=4,sci_mode=False) #pytorch不使用科学计数法显示for data in test_loader:acc=model.test(data)print(acc)
tensor([0.8186], device='cuda:0')

可以看到,预测值误差小于1的占了81.86%,效果还行。

八、分类问题

对于图分类问题,其实也差不多。只需要修改下Linear网络层:

self.out = Linear(hidden_channels, dataset.num_classes)

这样预测结果就会有num_classes个,取最大值的下标索引即可。
伪代码为:

pred=outputs.argmax(dim=1)
correct += int((pred == data.y).sum())

参考文献

[1] https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html
[2] https://zhuanlan.zhihu.com/p/504978470

这篇关于深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/337187

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、