art aot_论文的背后:能见度得出的AOT估计是否适合参数化卫星数据大气校正算法?

本文主要是介绍art aot_论文的背后:能见度得出的AOT估计是否适合参数化卫星数据大气校正算法?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

art aot

This has been a bit slow coming, but I am now sticking to my promise to write a Behind the paper post for each of my published academic papers. This is about:

来的有点慢,但是我现在仍然信守诺言,为我发表的每篇学术论文写一篇“幕后花”。 这是关于:

Wilson, R. T., E. J. Milton, and J. M. Nield (2015). Are visibility-derived AOT estimates suitable for parameterising satellite data atmospheric correction algorithms? International Journal of Remote Sensing 36 (6) 1675-1688

威尔逊,RT,EJ米尔顿和JM Nield(2015)。 可见性得出的AOT估计是否适合参数化卫星数据大气校正算法? 国际遥感杂志 36(6)1675-1688

Publishers LinkPost-print PDF

出版商链接 印后PDF

Screen Shot 2015-10-22 at 21.17.03

莱曼的摘要 (Layman’s summary)

Aerosol Optical Thickness (AOT) is a measure of how hazy the atmosphere is – that is, how easy it is for light to pass through it. It’s important to measure this accurately, as it has a range of applications. In this paper we focus on satellite image atmospheric correction. When satellites collect images of the Earth, the light has to pass through the atmosphere twice (once on the way from the sun to the Earth, once again on the way back from the Earth to the satellite) and this affects the light significantly. For example, it can be scattered or absorbed by various atmospheric constituents. We have to correct for this before we can use satellite images – and one of the ways to do that is to simulate what happens to light under the atmospheric conditions at the time, and then use this simulated information to remove the effects from the image.

气溶胶光学厚度(AOT)可以衡量大气的朦胧度,也就是说,光线通过大气的难易程度。 准确地进行测量很重要,因为它具有广泛的应用范围。 在本文中,我们着重于卫星图像大气校正。 当卫星收集地球图像时,光必须两次穿过大气层(一次从太阳到地球的途中,一次又一次从地球到人造卫星的途中),这会严重影响光。 例如,它可能被各种大气成分散射或吸收。 在使用卫星图像之前,我们必须对此进行校正-实现此目的的方法之一是模拟当时在大气条件下光照会发生什么,然后使用此模拟信息从图像中消除影响。

To do this simulation we need various bits of information on what the atmosphere was like when the image was acquired – and one of these is the AOT value. The problem is that it’s quite difficult to get hold of AOT values. There are some ground measurements sites – but only about 300 of them across the whole world. Therefore, quite a lot of people use measurements of atmospheric visibility as a proxy for AOT. This has many benefits, as loads of these measurements are taken (by airports, and local meteorological organisations), but is a bit scientifically questionable, because atmospheric visibility is measured horizontally (as in “I can see for miles!”) and AOT is measured vertically. There are various ‘standard’ ways of estimating AOT from visibility – and some of these are built in to tools that do atmospheric correction of images – and I wanted to investigate how well these worked.

要进行此模拟,我们需要有关获取图像时的大气状况的各种信息,其中之一就是AOT值。 问题在于很难掌握AOT值。 有一些地面测量站点,但全世界只有大约300个。 因此,很多人将大气能见度的测量值用作AOT的替代指标。 这是有很多好处的,因为这些测量是由机场(和当地气象组织)进行的,但是在科学上有点可疑,因为大气能见度是水平测量的(如“我能看到英里!”),AOT是垂直测量。 有多种“标准”方式可以根据可见度估算AOT,其中一些内置于对图像进行大气校正的工具中,我想研究一下这些方式的效果。

I used a few different datasets which had both visibility and AOT measurements, collected at the same time and place, and investigated the relationship. I found that the relationship was often very poor – and the error in the estimated AOT was never less than half of the mean AOT value (that is, if the mean AOT was 0.2, then the error would be 0.1 – not great!), and sometimes more than double the mean value! Simulating the effect on atmospheric correction showed that significant errors could result – and I recommended that visibility-derived AOT data should only be used for atmospheric correction as a last resort.

我使用了几个具有可见性和AOT测量值的不同数据集,这些数据集是在同一时间和地点收集的,并研究了这种关系。 我发现这种关系通常很差-估计的AOT的误差永远不会小于平均AOT值的一半(也就是说,如果平均AOT为0.2,则误差将是0.1 –不大!),有时甚至超过平均值的两倍! 模拟对大气校正的影响表明可能会导致重大误差,因此,我建议只能将能见度得出的AOT数据仅用于大气校正。

重要结论 (Key conclusions)

  • Estimation of AOT from horizontal visibility measurements can produce significant errors.
  • Radiative transfer simulations using different models (eg. MODTRAN and 6S) with the same visibility may produce significantly different results due to the differing methods used for estimating AOT from visibility
  • Errors can be significant for both radiance values (significantly larger than the noise level of the sensor) and vegetation indices such as NDVI and ARVI.
  • Overall: other methods for estimating AOT should be used wherever possible – as they nearly all have smaller errors than visibility-based estimates – and great care should be taken at low visibilities, when the error is even higher.
  • 根据水平能见度测量估算AOT会产生重大误差。
  • 使用不同模型(例如MODTRAN和6S)的具有相同可见性的辐射传输模拟可能会产生明显不同的结果,这是因为根据可见性估算AOT的方法不同
  • 对于辐射值(显着大于传感器的噪声水平)和植被指数(例如NDVI和ARVI),误差都可能很大。
  • 总体而言:应尽可能使用其他估算AOT的方法-因为它们几乎都比基于可见性的估算值具有较小的误差-当误差更高时,应在低可见性时格外小心。

关键结果 (Key results)

  • Error in visibility-derived AOT is highest at low visibilities
  • Root Mean Square Error ranges from 1.05 for visibilities < 10km to 0.05 for visibilities > 40km
  • The error for low visibilities is many times the mean AOT at those visibilities (for example, an average error of 0.76 for visibilities < 10km, when the average AOT is only 0.38!)
  • Overall, MODTRAN appears to perform poorly compared to the other methods (6S and the Koschmieder formula) – and this is particularly pronounced at low visibilities
  • Atmospheric correction with these erroneously-estimate AOT values can produce significant errors in radiance, which range from three times the Noise Equivalent Delta Radiance to over thirty times the NEDR!
  • There can still be significant errors in vegetation indices (NDVI/ARVI), of up to 0.12 and 0.09 respectively.
  • 低能见度时,能见度衍生的AOT的误差最高
  • 均方根均方根误差范围从对于<10km的可见性的1.05到对于> 40km的可见性的0.05
  • 低能见度的误差是这些能见度的平均AOT的许多倍(例如,对于小于10 km的能见度,平均误差为0.76,而平均AOT仅为0.38!)。
  • 总体而言,与其他方法(6S和Koschmieder公式)相比,MODTRAN的性能似乎较差-这在可见度较低的情况下尤其明显
  • 使用这些错误估计的AOT值进行大气校正会产生显着的辐射误差,范围从噪声等效Delta辐射强度的三倍到NEDR的三十倍以上!
  • 植被指数(NDVI / ARVI)仍然可能存在明显误差,分别高达0.12和0.09。

历史和评论 (History and Comments)

This work developed from one of my previous papers (Spatial variability of the atmosphere over southern England, and its effects on scene-based atmospheric corrections). In that paper I investigated a range of methods for estimating AOT – and one of these was by estimating it from from visibility.

这项工作是根据我以前的一篇论文( 英格兰南部大气的空间变化及其对基于场景的大气校正的影响 )发展而来的。 在那篇论文中,我研究了多种估计AOT的方法-其中之一是从可见性中进行估计。

I had always been a bit frustrated that lots of atmospheric correction tools required visibility as an input parameter – and wouldn’t allow you enter AOT even if you had an actual AOT measurement (eg. from an AERONET site or a Microtops measurement). I started to wonder about the error involved in the use of visibility rather than AOT – and did a very brief assessment of the accuracy as part of my investigation for the spatial variability paper. An extension of that accuracy assessment turned into this paper.

我一直感到有些沮丧,因为许多大气校正工具都需要可见性作为输入参数,即使您进行了实际的AOT测量(例如,从AERONET站点或Microtops测量),也不允许您输入AOT。 我开始怀疑使用能见度而不是AOT所涉及的错误,并在对空间变异性论文进行调查的过程中对准确性进行了非常简短的评估。 该准确性评估的扩展变成了本文。

数据,代码与方法 (Data, Code & Methods)

The good news is that the analysis performed for this paper was designed from the beginning to be reproducible. I used the R programming language, and the ProjectTemplate package to make this really nice and easy. All of the code is available on Github, and the README file there explains that all you need to do to reproduce the analysis is run:

好消息是,对本文进行的分析从一开始就被设计为可重复的。 我使用R编程语言和ProjectTemplate软件包使它变得非常好用和容易。 Github上提供了所有代码,并且其中的README文件说明已运行了所有用于重现分析的操作:

source('go.r')

to initialise everything, install all of the packages etc. You can then run any of the files in the src directory to reproduce a specific analysis.

要初始化所有组件,请安装所有软件包等。然后,您可以运行src目录中的任何文件以重现特定的分析结果。

That’s all good news, so what is the bad news? Well, the problem with reproducing this work is that you need access to the data – and most of the data I used is only available to academics, or cannot be ‘rehosted’ by me. There are instructions in the repository showing how to get hold of the data, but it’s quite a complex process which requires registering with the British Atmospheric Data Centre, requesting access to datasets, and then downloading the various pieces of data.

那都是好消息,那么坏消息是什么? 好吧,复制此作品的问题是您需要访问数据,而我使用的大多数数据仅对学者可用,或者不能被我“托管”。 存储库中有说明如何获取数据的说明,但这是一个非常复杂的过程,需要在英国大气数据中心进行注册,请求访问数据集,然后下载各种数据。

翻译自: https://www.pybloggers.com/2016/01/behind-the-paper-are-visibility-derived-aot-estimates-suitable-for-parameterising-satellite-data-atmospheric-correction-algorithms/

art aot

这篇关于art aot_论文的背后:能见度得出的AOT估计是否适合参数化卫星数据大气校正算法?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/335702

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密