0基础学习PyFlink——使用datagen生成流式数据

2023-11-03 01:12

本文主要是介绍0基础学习PyFlink——使用datagen生成流式数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大纲

  • 可控参数
    • 字段级规则
      • 生成方式
      • 数值控制
      • 时间戳控制
    • 表级规则
      • 生成速度
      • 生成总量
  • 结构
    • 生成环境
    • 定义行结构
      • 定义表信息
  • 案例
    • 随机Int型
    • 顺序Int型
    • 随机型Int数组
    • 带时间戳的多列数据
  • 完整代码
  • 参考资料

在研究Flink的水印(WaterMark)技术之前,我们可能需要Flink接收到流式数据,比如接入Kafka等。这就要求引入其他组件,增加了学习的难度。而Flink自身提供了datagen连接器,它可以用于生成流式数据,让问题内聚在Flink代码内部,从而降低学习探索的难度。
本节我们就介绍如何使用datagen生成数据。

可控参数

我们可以使用option方法控制生成的一些规则,主要分为“字段级规则”和“表级规则”。

字段级规则

顾名思义,字段级规则是指该规则作用于具体哪个字段,这就需要指明字段的名称——fields.col_name

生成方式

字段的生成方式由下面的字符串形式来控制(#表示字段的名称,下同)

fields.#.kind

可选值有:

  • random:随机方式,比如5,2,1,4,6……。
  • sequence:顺序方式,比如1,2,3,4,5,6……。

数值控制

如果kind是sequence,则数值控制使用:

  • fields.#.start:区间的起始值。
  • fields.#.end:区间的结束值。

如果配置了这个两个参数,则会生成有限个数的数据。

如果kind是random,则数值控制使用:

  • fields.#.min:随机算法会选取的最小值。
  • fields.#.max:随机算法会选取的最大值。

时间戳控制

fields.#.max-past仅仅可以用于TIMESTAMP和TIMESTAMP_LTZ类型的数据。它表示离现在时间戳最大的时间差,这个默认值是0。TIMESTAMP和TIMESTAMP_LTZ只支持random模式生成,这就需要控制随机值的区间。如果区间太小,我们生成的时间可能非常集中。后面我们会做相关测试。

表级规则

生成速度

rows-per-second表示每秒可以生成几条数据。

生成总量

number-of-rows表示一共可以生成多少条数据。如果这个参数不设置,则表示可以生成无界流。

结构

生成环境

我们需要流式环境,而datagen是Table API的连接器,于是使用流式执行环境创建一个流式表环境。

    stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)

定义行结构

    schame = Schema.new_builder().column('seed', DataTypes.INT()).build()

这个结构以及支持的生成模式是:

TypeSupported Generators
BOOLEANrandom
CHARrandom / sequence
VARCHARrandom / sequence
BINARYrandom / sequence
VARBINARYrandom / sequence
STRINGrandom / sequence
DECIMALrandom / sequence
TINYINTrandom / sequence
SMALLINTrandom / sequence
INTrandom / sequence
BIGINTrandom / sequence
FLOATrandom / sequence
DOUBLErandom / sequence
DATErandom
TIMErandom
TIMESTAMPrandom
TIMESTAMP_LTZrandom
INTERVAL YEAR TO MONTHrandom
INTERVAL DAY TO MONTHrandom
ROWrandom
ARRAYrandom
MAPrandom
MULTISETrandom

定义表信息

下面这个例子就是给seed字段按随机模式,生成seed_min和seed_max之间的数值,并且每秒生成rows_per_second行。

    table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('fields.seed.min', str(seed_min)) \.option('fields.seed.max', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()

案例

随机Int型

每秒生成5行数据,每行数据中seed字段值随机在最小值0和最大值100之间。由于没有指定number-of-rows,生成的是无界流。

def gen_random_int():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 0seed_max = 100rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('fields.seed.min', str(seed_min)) \.option('fields.seed.max', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()
+----+-------------+
| op |        seed |
+----+-------------+
| +I |          25 |
| +I |          28 |
| +I |          73 |
| +I |          68 |
| +I |          40 |
| +I |          55 |
| +I |           6 |
| +I |          41 |
| +I |          16 |
| +I |          19 |
……

顺序Int型

每秒生成5行数据,每行数据中seed字段值从1开始递增,一直自增到10。由于设置了最大和最小值,生成的是有界流。

def gen_sequence_int():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 1seed_max = 10rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'sequence') \.option('fields.seed.start', str(seed_min)) \.option('fields.seed.end', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()
+----+-------------+
| op |        seed |
+----+-------------+
| +I |           1 |
| +I |           2 |
| +I |           3 |
| +I |           4 |
| +I |           5 |
| +I |           6 |
| +I |           7 |
| +I |           8 |
| +I |           9 |
| +I |          10 |
+----+-------------+
10 rows in set

随机型Int数组

每秒生成5行数据,每行数据中seed字段是一个Int型数组,数组里面的每个元素也是随机的。

def gen_random_int_array():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.ARRAY(DataTypes.INT())) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()
+----+--------------------------------+
| op |                           seed |
+----+--------------------------------+
| +I | [625785630, -933999461, -48... |
| +I | [2087310154, 1602723641, 19... |
| +I | [1299442620, -613376781, -8... |
| +I | [2051511574, 246258035, -16... |
| +I | [2029482070, -1496468635, -... |
| +I | [1230213175, -1506525784, 7... |
| +I | [501476712, 1901967363, -56... |
……

带时间戳的多列数据

每秒生成5行数据,每行数据中seed字段值随机在最小值0和最大值100之间;timestamp字段随机在当前时间戳和“当前时间戳+max-past”之间。

def gen_random_int_and_timestamp():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 0seed_max = 100rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()) \.column('timestamp', DataTypes.TIMESTAMP()) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('fields.seed.min', str(seed_min)) \.option('fields.seed.max', str(seed_max)) \.option('fields.timestamp.kind', 'random') \.option('fields.timestamp.max-past', '0') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()

由于max-past值为0,所以我们看到上例中每秒生成的timestamp 都极接近。

+----+-------------+----------------------------+
| op |        seed |                  timestamp |
+----+-------------+----------------------------+
| +I |          66 | 2023-11-02 13:53:29.082000 |
| +I |           9 | 2023-11-02 13:53:29.146000 |
| +I |          12 | 2023-11-02 13:53:29.146000 |
| +I |          52 | 2023-11-02 13:53:29.146000 |
| +I |          29 | 2023-11-02 13:53:29.146000 |
| +I |          63 | 2023-11-02 13:53:30.066000 |
| +I |          25 | 2023-11-02 13:53:30.066000 |
| +I |          21 | 2023-11-02 13:53:30.066000 |
| +I |          24 | 2023-11-02 13:53:30.066000 |
| +I |           6 | 2023-11-02 13:53:30.066000 |
| +I |          62 | 2023-11-02 13:53:31.067000 |
| +I |          57 | 2023-11-02 13:53:31.067000 |
| +I |          44 | 2023-11-02 13:53:31.067000 |
| +I |           6 | 2023-11-02 13:53:31.067000 |
| +I |          16 | 2023-11-02 13:53:31.067000 |
……

如果我们把max-past放大到比较大的数值,timestamp也将大幅度变化。

.option('fields.timestamp.max-past', '10000')
+----+-------------+----------------------------+
| op |        seed |                  timestamp |
+----+-------------+----------------------------+
| +I |          89 | 2023-11-02 13:57:17.342000 |
| +I |          35 | 2023-11-02 13:57:10.915000 |
| +I |          32 | 2023-11-02 13:57:11.045000 |
| +I |          74 | 2023-11-02 13:57:18.407000 |
| +I |          24 | 2023-11-02 13:57:13.603000 |
| +I |          82 | 2023-11-02 13:57:12.139000 |
| +I |          41 | 2023-11-02 13:57:16.129000 |
| +I |          95 | 2023-11-02 13:57:16.592000 |
| +I |          80 | 2023-11-02 13:57:14.364000 |
| +I |          60 | 2023-11-02 13:57:18.994000 |
| +I |          56 | 2023-11-02 13:57:19.330000 |
| +I |          10 | 2023-11-02 13:57:18.876000 |
| +I |          43 | 2023-11-02 13:57:12.449000 |
| +I |          73 | 2023-11-02 13:57:13.183000 |
| +I |          17 | 2023-11-02 13:57:18.736000 |
| +I |          46 | 2023-11-02 13:57:21.368000 |
……

完整代码


from pyflink.datastream import StreamExecutionEnvironment,RuntimeExecutionMode
from pyflink.table import StreamTableEnvironment, TableDescriptor, Schema, DataTypesdef gen_random_int():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 0seed_max = 100rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('fields.seed.min', str(seed_min)) \.option('fields.seed.max', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_sequence_int():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 1seed_max = 10rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'sequence') \.option('fields.seed.start', str(seed_min)) \.option('fields.seed.end', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_sequence_string():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 0seed_max = 100rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.STRING()).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'sequence') \.option('fields.seed.start', str(seed_min)) \.option('fields.seed.end', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_char():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.CHAR(4)).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_int_and_timestamp():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 0seed_max = 100rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()) \.column('timestamp', DataTypes.TIMESTAMP()) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('fields.seed.min', str(seed_min)) \.option('fields.seed.max', str(seed_max)) \.option('fields.timestamp.kind', 'random') \.option('fields.timestamp.max-past', '10000') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_int_array():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.ARRAY(DataTypes.INT())) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_map():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.MAP(DataTypes.STRING(), DataTypes.INT())) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_multiset():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.MULTISET(DataTypes.STRING())) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_row():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.ROW([DataTypes.FIELD("id", DataTypes.BIGINT()), DataTypes.FIELD("data", DataTypes.STRING())])) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()if __name__ == '__main__':gen_random_int_and_timestamp()

参考资料

  • https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/datagen/

这篇关于0基础学习PyFlink——使用datagen生成流式数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/334544

相关文章

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,