datagen专题

【Flink】FlinkSQL的DataGen连接器(测试利器)

简介 我们在实际开发过程中可以使用FlinkSQL的DataGen连接器实现FlinkSQL的批或者流模拟数据生成,DataGen 连接器允许按数据生成规则进行读取,但注意:DataGen连接器不支持复杂类型: Array,Map,Row。 请用计算列构造这些类型   创建有界DataGen表 CREATE TABLE test (   a INT,   b STRING,   creat

【大数据】Flink 测试利器:DataGen

Flink 测试利器:DataGen 1.什么是 FlinkSQL ?2.什么是 Connector ?3.DataGen Connector3.1 Demo3.2 支持的类型3.3 连接器属性 4.DataGen 使用案例4.1 场景一:生成一亿条数据到 Hive 表4.2 场景二:持续每秒生产 10 万条数到消息队列 5.思考 1.什么是 FlinkSQL ? Flink

0基础学习PyFlink——使用datagen生成流式数据

大纲 可控参数字段级规则生成方式数值控制时间戳控制 表级规则生成速度生成总量 结构生成环境定义行结构定义表信息 案例随机Int型顺序Int型随机型Int数组带时间戳的多列数据 完整代码参考资料 在研究Flink的水位线(WaterMark)技术之前,我们可能需要Flink接收到流式数据,比如接入Kafka等。这就要求引入其他组件,增加了学习的难度。而Flink自身提供了data

0基础学习PyFlink——使用datagen生成流式数据

大纲 可控参数字段级规则生成方式数值控制时间戳控制 表级规则生成速度生成总量 结构生成环境定义行结构定义表信息 案例随机Int型顺序Int型随机型Int数组带时间戳的多列数据 完整代码参考资料 在研究Flink的水印(WaterMark)技术之前,我们可能需要Flink接收到流式数据,比如接入Kafka等。这就要求引入其他组件,增加了学习的难度。而Flink自身提供了datag