使用resnet18预训练模型实时检测摄像头画面中的物体(画面显示英文类名)

本文主要是介绍使用resnet18预训练模型实时检测摄像头画面中的物体(画面显示英文类名),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

imagenet_class_index.cs文件下载

https://download.csdn.net/download/qq_42864343/88492936

代码

import osimport numpy as np
import pandas as pdimport cv2 # opencv-python
from tqdm import tqdm # 进度条
from PIL import Image # pillow
import matplotlib.pyplot as plt
%matplotlib inlineimport torch
import torch.nn.functional as F
from torchvision import models
import time
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device:', device)
# 载入预训练图像分类模型
model = models.resnet18(pretrained=True)
model = model.eval()
model = model.to(device)
# 将idx与类名相对应
df = pd.read_csv('data/imagenet_class_index.csv')
idx_to_labels = {}
for idx, row in df.iterrows():# 英文类名idx_to_labels[row['ID']] = row['class']
# 图像预处理
from torchvision import transforms# 测试集图像预处理-RCTN:缩放裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])
# 处理一帧的函数,供后面调用
def process_frame(img):'''输入摄像头拍摄画面bgr-array,输出图像分类预测结果bgr-array'''# 记录该帧开始处理的时间start_time = time.time()img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR转RGBimg_pil = Image.fromarray(img_rgb) # array 转 PILinput_img = test_transform(img_pil).unsqueeze(0).to(device) # 预处理pred_logits = model(input_img) # 执行前向预测,得到所有类别的 logit 预测分数pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算top_n = torch.topk(pred_softmax, 5) # 取置信度最大的 n 个结果pred_ids = top_n[1].cpu().detach().numpy().squeeze() # 解析预测类别confs = top_n[0].cpu().detach().numpy().squeeze() # 解析置信度# 在图像上写字for i in range(len(confs)):pred_class = idx_to_labels[pred_ids[i]]text = '{:<15} {:>.3f}'.format(pred_class, confs[i])# 图片,添加的文字,左上角坐标,字体,字体大小,颜色,线宽,线型img = cv2.putText(img, text, (50, 160 + 80 * i), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 4, cv2.LINE_AA)# 记录该帧处理完毕的时间end_time = time.time()# 计算每秒处理图像帧数FPSFPS = 1/(end_time - start_time)# 图片,添加的文字,左上角坐标,字体,字体大小,颜色,线宽,线型img = cv2.putText(img, 'FPS  '+str(int(FPS)), (50, 80), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 255), 4, cv2.LINE_AA)return img
# 调用摄像头处理摄像头中的画面
def view_video(video_path):# 设置显示窗口的大小width,height = 800,600video = cv2.VideoCapture(video_path)'''把摄像头设置为1980 x 1080'''video.set(cv2.CAP_PROP_FRAME_WIDTH,1920)video.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)video.set(cv2.CAP_PROP_FOURCC,cv2.VideoWriter.fourcc('M','J','P','G'))if video.isOpened():'''video.read() 一帧一帧地读取open 得到的是一个布尔值,就是 True 或者 Falseframe 得到当前这一帧的图像'''open, frame = video.read()else:open = Falsewhile open:ret, frame = video.read()# 如果读到的帧数不为空,那么就继续读取,如果为空,就退出if frame is None:breakif ret == True:# !!!处理帧函数frame = process_frame(frame)cv2.namedWindow('video',cv2.WINDOW_NORMAL)cv2.imshow("video", frame)# 50毫秒内判断是否受到esc按键的信息if cv2.waitKey(50) & 0xFF == 27:breakvideo.release()cv2.destroyAllWindows()
# linux usb摄像头的Id一般为1
view_video(1)

这篇关于使用resnet18预训练模型实时检测摄像头画面中的物体(画面显示英文类名)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/327977

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意