深度强化学习5:Q-learning用于连续动作 (NAF算法)

2023-11-01 12:20

本文主要是介绍深度强化学习5:Q-learning用于连续动作 (NAF算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【李宏毅深度强化学习笔记】5、Q-learning用于连续动作 (NAF算法)

【李宏毅深度强化学习笔记】2、Proximal Policy Optimization (PPO) 算法

【李宏毅深度强化学习笔记】3、Q-learning(Basic Idea)

【李宏毅深度强化学习笔记】4、Q-learning更高阶的算法

【李宏毅深度强化学习笔记】5、Q-learning用于连续动作 (NAF算法)(本文)

【李宏毅深度强化学习笔记】6、Actor-Critic、A2C、A3C、Pathwise Derivative Policy Gradient

【李宏毅深度强化学习笔记】7、Sparse Reward

【李宏毅深度强化学习笔记】8、Imitation Learning

-------------------------------------------------------------------------------------------------------

【李宏毅深度强化学习】视频地址:https://www.bilibili.com/video/av63546968?p=5

课件地址:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS18.html

-------------------------------------------------------------------------------------------------------

 

普通的Q-learning比policy gradient比较容易实现,但是在处理连续动作(比如方向盘要转动多少度)的时候就会显得比较吃力

因为如果action是离散的几个动作,那就可以把这几个动作都代到Q-function去算Q-value。但是如果action是连续的,此时action就是一个vector,vector里面又都有对应的value,那就没办法穷举所有的action去算Q-value。

 先介绍2种容易想到但效果不一定好的方法

1、 穷举action

这个方法sample N个action,一个一个代到Q function里,看哪个a得到的Q value最大。

缺点:即便sample 很多很多个action,还是没办法把所有的action都穷举出来(因为它是连续动作)。这样就会导致结果不那么精确

 

2、使用梯度上升求Q value

使用gradient ascent来求解,看采取什么action能让Q-function得到最大的Q value。

缺点:

  1. 由于使用gradient ascent,可能得到的结果只是局部的最优解
  2. 每次考虑采取哪个a前,都要做一次类似于train network的工作,这个运算量太大

 

以上两种方法是比较容易想到,但是效果不好的方法,下面介绍一个比较好的方法

 

3、Normalized Advantage Functions(NAF)

设计一个新的网络来解连续动作的最优化问题。

论文地址:https://arxiv.org/pdf/1603.00748.pdf

先给出概念如下,后面再讲具体的。

 (公式3-1)

此时Q value 由状态值函数V与动作价值函数 A 相加而得。

(公式3-2)

其中 x 表示状态State,u表示动作Action,θ 是对应的网络参数,A函数可以看成动作 u 在状态 x 下的优势。我们的目的就是要使网络输出的动作 u 所对应的Q值最大。 

具体来说,如下:

从buffer里sample一个batch的transition(s_t,a_t,r_t,s_{t+1}),新的Q function以状态s_t,动作a_t作为输入,依据输入的s_t得到输出\mu (s_t)(vector),\Sigma (s_t)(matrix),V(s_t)(scalar)

其中,在输出\Sigma (s_t)这个矩阵前,其实先输出了矩阵L,矩阵L是对角线都是正数的下三角矩阵。然后根据乔列斯基(Cholesky)分解构造出最终的\Sigma (s_t)这个矩阵(对应公式3-2的P矩阵)。

输入的动作a再与上面三个结果进行组合形成Q function,如下图:

a和\mu (s)转置后,变成1行N列;与矩阵相乘;与a和\mu (s)(N行1列)相乘,最终变成一个普通的数值,即标量(scalar),再加上V(s)就是最后的Q value。另外,在状态s下要做出的action由\mu (s)给出。这样,NAF就实现既输出动作action,也输出这个action对应的Q value

(这时候再看一下,上图的前三项其实就是类似于文章前面的公式3-1和公式3-2的A函数(优势函数)。

 

接下来看如何使Q function输出的Q value达到最大值:

这是NAF的Q function:

优势函数(advantage function)可以看成A(s,a) = -(a-\mu(s))^2\times P,又因为P矩阵在论文中有设定为是正定的矩阵,那么A就是一个小于等于0的值

所以,理想的情况就是当\mu (s) = a,那么此时A函数达到最大值0,那么Q function也得到最大的Q value

 

可能有人疑惑:

既然是通过\mu (s)输出action,那输入的action是干什么的?

(这里是我参考(https://blog.csdn.net/lipengcn/article/details/81840756)后的理解,不一定准确,如果有误请提出!)

输入的action 是从transition中sample的动作,是起到训练网络中的label的作用。目的是让网络输出的\mu (s)不偏离 a 太多并且希望最后\mu (s)逐点收敛于a,从而得到最大的Q value。 

 

下图为NAF执行过程(图参考自https://blog.csdn.net/u013236946/article/details/73243310)

NAF伪代码如下: 

 

Normalized Advantage Functions(NAF)更多内容可参考以下博文

https://blog.csdn.net/lipengcn/article/details/81840756

https://blog.csdn.net/u013236946/article/details/73243310

https://zhuanlan.zhihu.com/p/21609472

 

4、不使用Q-learning而使用actor-critic

具体内容可以看下篇笔记(https://blog.csdn.net/ACL_lihan/article/details/104087569)

这篇关于深度强化学习5:Q-learning用于连续动作 (NAF算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322933

相关文章

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree