GEE:根据时间序列的统计值合成影像(标准差、众数、百分位数、最大值、最小值、均值、中值、方差、像素和、像素数)

本文主要是介绍GEE:根据时间序列的统计值合成影像(标准差、众数、百分位数、最大值、最小值、均值、中值、方差、像素和、像素数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者: _养乐多_


在地球引擎(Google Earth Engine,简称GEE)平台上,我们可以使用时间序列数据来生成合成影像。时间序列数据是一组按时间排序的数据,可以是遥感影像、气象数据等等。利用时间序列数据,我们可以分析出不同时间点上数据的变化情况,进而合成一张更加全面、准确的影像。

下面我们来介绍如何在GEE平台上根据时间序列的统计值合成影像,并介绍各种统计值的计算代码。

结果如下图所示,

在这里插入图片描述


文章目录

      • 一、思路
      • 二、统计方法(reduce)详解
      • 三、代码框架
      • 四、代码链接


一、思路

首先,我们需要准备一组时间序列数据。以Sentinel-2计算的2017年到2019年的归一化植被指数(NDVI)数据为例。使用reduce系列函数来计算统计值。再将统计值构成一个新的影像,并将影像可视化,加载到地图上,并能下载到个人资产Assets中。

二、统计方法(reduce)详解

名称函数
最大值ee.Reducer.max()
最小值ee.Reducer.min()
均值ee.Reducer.mean()
众数ee.Reducer.mode()
标准差ee.Reducer.stdDev()
方差ee.Reducer.variance()
ee.Reducer.sum()
像素数ee.Reducer.count()
百分位数ee.Reducer.percentile([95])

reduce 操作可以被用于对时间序列影像数据进行统计分析。在本代码中,NDVI 影像数据通过 reduce 操作计算了中位数波段和标准差波段,这些统计量都是基于时间序列数据计算得出的。

reduce 操作的基本原理是将数据集中的所有像素在某个维度上进行汇总统计。在本代码中,NDVI 影像数据的 reduce 操作是在时间轴上进行的,即将一系列的影像数据合并成一个单独的影像,该影像代表了时间序列中所有像素的统计结果。

具体地说,代码中使用了 ee.Reducer 类型的函数对 NDVI 影像数据进行 reduce 操作。Reducer 类型的函数有多种,可以用于计算各种统计指标,例如平均值、最大值、最小值、中位数、标准差等。在本代码中,通过 reduce(ee.Reducer.stdDev()) 函数计算了标准差波段,该函数会将 NDVI 影像数据的所有像素在时间轴上进行汇总,并输出一个新的影像,其中每个像素的值代表了该像素在时间序列中的标准差统计结果。

因此,通过 reduce 操作可以从时间序列影像数据中提取出各种统计信息,帮助分析者深入挖掘影像数据中的有用信息,从而更好地理解和解释数据。

三、代码框架

接下来,我们需要计算出时间序列数据的统计值。在GEE平台上,可以使用reduce系列函数来计算统计值。我们可以计算出每个像素时间序列的平均NDVI值、最大值NDVI值、标准差,代码如下:

//导入研究区矢量
var roi = table
Map.centerObject(roi, 9);
Map.addLayer(roi, {color:"black"}, "roi");var period_of_interest = ee.Filter.date('2017-01-01', '2019-12-31');
var inBands = ["B2","B3","B4","B6","B8","B11"]// 构建Sentinel-2集合,按日期、边界和云覆盖百分比进行筛选
var dataset = ee.ImageCollection('COPERNICUS/S2_SR').filter(period_of_interest).filterBounds(roi).filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',14)).map(maskS2clouds);
print("Sentinel 2 Image Collection",dataset)// 包含NDVI和BSI指数的所有影像集合
var collection = dataset.select(inBands).map(addNDVI).map(roiClip);
print(collection,'Collection with inBands and Statistic indices');var NDVI = collection.select('NDVI')// 定义和计算中位数波段和其他指数统计
// 计算其他指数只需要将ee.Reducer.max()换掉就行
var ndvimax = NDVI.reduce(ee.Reducer.max()).rename("NDVI_MAX");// 可视化参数
var viz = {min:-1, max:1, palette:'blue, white, green'};
Map.addLayer(ndvimax, viz, 'NDVI_MAX');// 使用RGB和CIR的最终数据集的可视化(假彩色合成和真彩色合成)
Map.addLayer(collection, {  min: 0.0, max: 0.3, bands: ['B4', 'B3', 'B2'],}, 'RGB');
Map.addLayer(collection, {  min: 0.0, max: 0.3, bands: ['B8', 'B4', 'B3'],}, 'CIR');// 将图像导出到地球引擎Assets
Export.image.toAsset({image: ndvimax,region: roi,description: 'DATASET_COMPOSITION',scale: 10
});//*******************函数库*******************//
// Sentinel-2去云
function maskS2clouds(image) {var qa = image.select('QA60');// Bits 10 and 11 are clouds and cirrus, respectively.var cloudBitMask = 1 << 10;var cirrusBitMask = 1 << 11;// Both flags should be set to zero, indicating clear conditions.var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and(qa.bitwiseAnd(cirrusBitMask).eq(0));return image.updateMask(mask).divide(10000);
}//给影像添加NDVI波段
function addNDVI(image) {var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI').copyProperties(image,['system:time_start']);return image.addBands(ndvi);
};//将图像裁剪到研究区域内
function roiClip(image){return image.clip(roi);
}

在这段代码中,首先导入了研究区矢量,并将其居中展示在地图上。通过Map.addLayer()函数添加了一个名为“roi”的图层,它是以黑色表示的研究区边界。接下来,创建了一个日期过滤器,对Sentinel-2卫星影像的数据进行筛选。我们只选择了2017年1月1日至2019年12月31日期间的影像,同时只选择了云覆盖率小于14%的影像,以确保影像质量。还调用了两个函数,一个用于去除云层,另一个用于为图像添加NDVI波段,以计算NDVI指数。然后,使用roiClip()函数对每个影像进行裁剪,以确保每个影像都在研究区域内。最后,将所有的影像合并成一个图层集合,并计算出每个波段的最大值,并将其添加到地图上。

我们还将可视化参数viz定义为一个对象,用于指定NDVI_MAX图层的最小值和最大值,以及调色板的颜色。还使用Map.addLayer()函数将假彩色合成和真彩色合成添加到地图上。最后,使用Export.image.toAsset()函数将最终图像导出到GEE资产Assets中。

此代码中还包含三个自定义函数。第一个函数maskS2clouds()用于去除Sentinel-2卫星影像中的云层;第二个函数addNDVI()用于为图像添加NDVI波段;第三个函数roiClip()用于将图像裁剪到研究区域内。这些函数可以在代码末尾的函数库中找到。

通过使用这些代码,可以对指定研究区域内的Sentinel-2卫星影像进行处理,并计算出NDVI指数,以更好地了解该地区的植被覆盖情况。此代码还展示了如何将图像导出到GEE资产中,以供后续分析和可视化。

四、代码链接

https://code.earthengine.google.com/efe3d5c6637987913e38f2a92c5f8d98?noload=true

这篇关于GEE:根据时间序列的统计值合成影像(标准差、众数、百分位数、最大值、最小值、均值、中值、方差、像素和、像素数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319513

相关文章

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

对postgresql日期和时间的比较

《对postgresql日期和时间的比较》文章介绍了在数据库中处理日期和时间类型时的一些注意事项,包括如何将字符串转换为日期或时间类型,以及在比较时自动转换的情况,作者建议在使用数据库时,根据具体情况... 目录PostgreSQL日期和时间比较DB里保存到时分秒,需要和年月日比较db里存储date或者ti

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量