【深度学习实验】网络优化与正则化(二):基于自适应学习率的优化算法详解:Adagrad、Adadelta、RMSprop

本文主要是介绍【深度学习实验】网络优化与正则化(二):基于自适应学习率的优化算法详解:Adagrad、Adadelta、RMSprop,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、实验介绍
  • 二、实验环境
    • 1. 配置虚拟环境
    • 2. 库版本介绍
  • 三、实验内容
    • 0. 导入必要的库
    • 1. 随机梯度下降SGD算法
      • a. PyTorch中的SGD优化器
      • b. 使用SGD优化器的前馈神经网络
    • 2.随机梯度下降的改进方法
      • a. 学习率调整
      • b. 梯度估计修正
    • 3. 梯度估计修正:动量法Momentum
    • 4. 自适应学习率
      • Adagrad算法
      • Adadelta算法
      • RMSprop算法
      • 算法测试
    • 5. 代码整合(以RMSprop算法为例)

  任何数学技巧都不能弥补信息的缺失。
——科尼利厄斯·兰佐斯(Cornelius Lanczos)匈牙利数学家、物理学家

一、实验介绍

  深度神经网络在机器学习中应用时面临两类主要问题:优化问题和泛化问题。

  • 优化问题:深度神经网络的优化具有挑战性。

    • 神经网络的损失函数通常是非凸函数,因此找到全局最优解往往困难。
    • 深度神经网络的参数通常非常多,而训练数据也很大,因此使用计算代价较高的二阶优化方法不太可行,而一阶优化方法的训练效率通常较低。
    • 深度神经网络存在梯度消失梯度爆炸问题,导致基于梯度的优化方法经常失效。
  • 泛化问题:由于深度神经网络的复杂度较高且具有强大的拟合能力,很容易在训练集上产生过拟合现象。因此,在训练深度神经网络时需要采用一定的正则化方法来提高网络的泛化能力。

  目前,研究人员通过大量实践总结了一些经验方法,以在神经网络的表示能力、复杂度、学习效率和泛化能力之间取得良好的平衡,从而得到良好的网络模型。本系列文章将从网络优化和网络正则化两个方面来介绍如下方法:

  • 在网络优化方面,常用的方法包括优化算法的选择参数初始化方法数据预处理方法逐层归一化方法超参数优化方法
  • 在网络正则化方面,一些提高网络泛化能力的方法包括ℓ1和ℓ2正则化权重衰减提前停止丢弃法数据增强标签平滑等。

  本文将介绍基于自适应学习率的优化算法:Adagrad、Adadelta、RMSprop

二、实验环境

  本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

0. 导入必要的库

import torch
import torch.nn.functional as F
from d2l import torch as d2l
from sklearn.datasets import load_iris
from torch.utils.data import Dataset, DataLoader

1. 随机梯度下降SGD算法

  随机梯度下降(Stochastic Gradient Descent,SGD)是一种常用的优化算法,用于训练深度神经网络。在每次迭代中,SGD通过随机均匀采样一个数据样本的索引,并计算该样本的梯度来更新网络参数。具体而言,SGD的更新步骤如下:

  1. 从训练数据中随机选择一个样本的索引。
  2. 使用选择的样本计算损失函数对于网络参数的梯度。
  3. 根据计算得到的梯度更新网络参数。
  4. 重复以上步骤,直到达到停止条件(如达到固定的迭代次数或损失函数收敛)。

a. PyTorch中的SGD优化器

   Pytorch官方教程

optimizer = torch.optim.SGD(model.parameters(), lr=0.2)

b. 使用SGD优化器的前馈神经网络

   【深度学习实验】前馈神经网络(final):自定义鸢尾花分类前馈神经网络模型并进行训练及评价

2.随机梯度下降的改进方法

  传统的SGD在某些情况下可能存在一些问题,例如学习率选择困难和梯度的不稳定性。为了改进这些问题,提出了一些随机梯度下降的改进方法,其中包括学习率的调整和梯度的优化。

a. 学习率调整

在这里插入图片描述

  • 学习率衰减(Learning Rate Decay):随着训练的进行,逐渐降低学习率。常见的学习率衰减方法有固定衰减、按照指数衰减、按照时间表衰减等。
  • Adagrad:自适应地调整学习率。Adagrad根据参数在训练过程中的历史梯度进行调整,对于稀疏梯度较大的参数,降低学习率;对于稀疏梯度较小的参数,增加学习率。这样可以在不同参数上采用不同的学习率,提高收敛速度。
  • Adadelta:与Adagrad类似,但进一步解决了Adagrad学习率递减过快的问题。Adadelta不仅考虑了历史梯度,还引入了一个累积的平方梯度的衰减平均,以动态调整学习率。
  • RMSprop:也是一种自适应学习率的方法,通过使用梯度的指数加权移动平均来调整学习率。RMSprop结合了Adagrad的思想,但使用了衰减平均来减缓学习率的累积效果,从而更加稳定。

b. 梯度估计修正

  • Momentum:使用梯度的“加权移动平均”作为参数的更新方向。Momentum方法引入了一个动量项,用于加速梯度下降的过程。通过积累之前的梯度信息,可以在更新参数时保持一定的惯性,有助于跳出局部最优解、加快收敛速度。
  • Nesterov accelerated gradient:Nesterov加速梯度(NAG)是Momentum的一种变体。与Momentum不同的是,NAG会先根据当前的梯度估计出一个未来位置,然后在该位置计算梯度。这样可以更准确地估计当前位置的梯度,并且在参数更新时更加稳定。
  • 梯度截断(Gradient Clipping):为了应对梯度爆炸或梯度消失的问题,梯度截断的方法被提出。梯度截断通过限制梯度的范围,将梯度控制在一个合理的范围内。常见的梯度截断方法有阈值截断和梯度缩放。

3. 梯度估计修正:动量法Momentum

【深度学习实验】网络优化与正则化(一):优化算法:使用动量优化的随机梯度下降算法(Stochastic Gradient Descent with Momentum)

4. 自适应学习率

Adagrad算法

   Adagrad(Adaptive Gradient Algorithm)算法会为每个参数维护一个学习率,该学习率随着时间的推移会逐渐减小。它适用于稀疏数据集,能够有效地处理出现较少的特征。
在这里插入图片描述

def init_adagrad_states(feature_dim):s_w = torch.zeros((feature_dim, 3))s_b = torch.zeros(3)return (s_w, s_b)def adagrad(params, states, hyperparams):eps = 1e-6for p, s in zip(params, states):with torch.no_grad():s[:] += torch.square(p.grad)p[:] -= hyperparams['lr'] * p.grad / torch.sqrt(s + eps)p.grad.data.zero_()
  • init_adagrad_states函数用于初始化Adagrad算法中的状态。
    • 创建两个张量 s_ws_b,分别用于保存权重参数和偏置参数的平方梯度累积和。这些状态张量的形状与对应的参数张量相同。
  • adagrad函数使用Adagrad算法来更新模型的参数。
    • 接受三个输入:params表示模型的参数张量列表,states表示Adagrad算法的状态张量列表,hyperparams表示超参数字典,其中包含学习率 lr
    • 在更新参数之前,算法首先定义了一个小量 eps,用于避免除零错误。
    • 对于每个参数张量 p 和对应的状态张量 s,算法执行以下操作:
      • 计算参数梯度的平方。
      • 将平方梯度累积到状态张量 s 中。
      • 使用自适应学习率更新参数 p。这里使用了累积的平方梯度来调整学习率的大小,以更好地适应不同参数的更新需求。
      • 使用 p.grad.data.zero_() 将参数梯度置零,以便下一次迭代时重新计算梯度。

Adadelta算法

   Adadelta算法是Adagrad的改进版本,通过限制累积梯度的历史信息,解决了Adagrad学习率递减过快的问题。它对学习率的调整更加平滑,适合于长期训练的模型。

在这里插入图片描述

def init_adadelta_states(feature_dim):s_w = torch.zeros((feature_dim, 3))s_b = torch.zeros(3)delta_w = torch.zeros((feature_dim, 3))delta_b = torch.zeros(3)return (s_w, s_b, delta_w, delta_b)def adadelta(params, states, hyperparams):rho, eps = hyperparams['rho'], 1e-6for p, s, delta in zip(params, states[:2], states[2:]):with torch.no_grad():s[:] = rho * s + (1 - rho) * torch.square(p.grad)update = (torch.sqrt(delta + eps) / torch.sqrt(s + eps)) * p.gradp[:] -= updatedelta[:] = rho * delta + (1 - rho) * torch.square(update)p.grad.data.zero_()
  • init_adadelta_states函数用于初始化Adadelta算法的状态。
    • 创建了四个张量 s_ws_bdelta_wdelta_b,分别用于保存权重参数和偏置参数的梯度平方累积和以及参数更新的累积平方梯度。这些状态张量的形状与对应的参数张量相同。
  • adadelta函数使用Adadelta算法来更新模型的参数。
    • 接受三个输入:params表示模型的参数张量列表,states表示Adadelta算法的状态张量列表,hyperparams表示超参数字典,其中包含衰减率 rho
    • 在更新参数之前,算法首先定义了两个小量:rho表示衰减率,用于平衡历史梯度和当前梯度的贡献,eps用于避免除零错误。
    • 对于每个参数张量 p 和对应的状态张量 sdelta,算法执行以下操作:
      • 计算参数梯度的平方。
      • 使用衰减率 rho 更新状态张量 s:使用历史梯度和当前梯度的加权平均,以平衡参数更新的速度。
      • 计算参数更新的值 update:使用参数更新的累积平方梯度来调整更新的幅度。
      • 使用更新值 update 更新参数 p:根据调整后的学习率大小来更新参数。
      • 使用衰减率 rho 更新累积平方梯度 delta
      • 使用 p.grad.data.zero_() 将参数梯度置零,以便下一次迭代时重新计算梯度。

RMSprop算法

   RMSprop(Root Mean Square Propagation)算法是一种针对Adagrad算法的改进方法,通过引入衰减系数来平衡历史梯度和当前梯度的贡献。它能够更好地适应不同参数的变化情况,对于非稀疏数据集表现较好。

在这里插入图片描述

def init_rmsprop_states(feature_dim):s_w = torch.zeros((feature_dim, 3))s_b = torch.zeros(3)return (s_w, s_b)def rmsprop(params, states, hyperparams):gamma, eps = hyperparams['gamma'], 1e-6for p, s in zip(params, states):with torch.no_grad():s[:] = gamma * s + (1 - gamma) * torch.square(p.grad)p[:] -= hyperparams['lr'] * p.grad / torch.sqrt(s + eps)p.grad.data.zero_()
  • init_rmsprop_states函数用于初始化RMSprop算法中的状态。
    • 创建两个张量 s_ws_b,分别用于保存权重参数和偏置参数的梯度平方累积和。这些状态张量的形状与对应的参数张量相同。
  • rmsprop函数使用RMSprop算法来更新模型的参数。
    • 它接受三个输入:params表示模型的参数张量列表,states表示RMSprop算法的状态张量列表,hyperparams表示超参数字典,其中包含学习率 lr 和衰减率 gamma
    • 在更新参数之前,算法首先定义了两个小量:gamma表示衰减率,用于平衡历史梯度和当前梯度的贡献,eps用于避免除零错误。
    • 对于每个参数张量 p 和对应的状态张量 s,算法执行以下操作:
      • 使用 torch.square(p.grad) 计算参数梯度的平方。
      • 使用衰减率 gamma 更新状态张量 s:使用了历史梯度和当前梯度的加权平均,以平衡参数更新的速度。
      • 使用自适应学习率更新参数 p:使用了累积的梯度平方来调整学习率的大小,以更好地适应不同参数的更新需求。
      • 使用 p.grad.data.zero_() 将参数梯度置零,以便下一次迭代时重新计算梯度。

算法测试

batch_size = 24# 构建训练集
train_dataset = IrisDataset(mode='train')
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)lr = 0.02
train(adagrad, init_adagrad_states(4), {'lr': lr}, train_loader, 4)
# train(rmsprop, init_rmsprop_states(4), {'lr': lr, 'gamma': 0.9}, train_loader, 4)
  • IrisDataset类:

    • 参照前文:【深度学习实验】前馈神经网络(七):批量加载数据(直接加载数据→定义类封装数据)
  • train函数:

    • 参照前文:【深度学习实验】网络优化与正则化(一):优化算法:使用动量优化的随机梯度下降算法(Stochastic Gradient Descent with Momentum)

5. 代码整合(以RMSprop算法为例)

import torch
from torch import nn
import torch.nn.functional as F
from d2l import torch as d2l
from sklearn.datasets import load_iris
from torch.utils.data import Dataset, DataLoaderclass FeedForward(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(FeedForward, self).__init__()self.fc1 = nn.Linear(input_size, hidden_size)self.fc2 = nn.Linear(hidden_size, output_size)self.act = nn.Sigmoid()def forward(self, inputs):outputs = self.fc1(inputs)outputs = self.act(outputs)outputs = self.fc2(outputs)return outputsdef evaluate_loss(net, data_iter, loss):"""评估给定数据集上模型的损失Defined in :numref:`sec_model_selection`"""metric = d2l.Accumulator(2)  # 损失的总和,样本数量for X, y in data_iter:X = X.to(torch.float32)out = net(X)#         y = d2l.reshape(y, out.shape)l = loss(out, y.long())metric.add(d2l.reduce_sum(l), d2l.size(l))return metric[0] / metric[1]def train(trainer_fn, states, hyperparams, data_iter, feature_dim, num_epochs=2):"""Defined in :numref:`sec_minibatches`"""# 初始化模型w = torch.normal(mean=0.0, std=0.01, size=(feature_dim, 3),requires_grad=True)b = torch.zeros((3), requires_grad=True)# 训练模型animator = d2l.Animator(xlabel='epoch', ylabel='loss',xlim=[0, num_epochs], ylim=[0.9, 1.1])n, timer = 0, d2l.Timer()# 这是一个单层线性层net = lambda X: d2l.linreg(X, w, b)loss = F.cross_entropyfor _ in range(num_epochs):for X, y in data_iter:X = X.to(torch.float32)l = loss(net(X), y.long()).mean()l.backward()trainer_fn([w, b], states, hyperparams)n += X.shape[0]if n % 48 == 0:timer.stop()animator.add(n / X.shape[0] / len(data_iter),(evaluate_loss(net, data_iter, loss),))timer.start()print(f'loss: {animator.Y[0][-1]:.3f}, {timer.avg():.3f} sec/epoch')return timer.cumsum(), animator.Y[0]def load_data(shuffle=True):x = torch.tensor(load_iris().data)y = torch.tensor(load_iris().target)# 数据归一化x_min = torch.min(x, dim=0).valuesx_max = torch.max(x, dim=0).valuesx = (x - x_min) / (x_max - x_min)if shuffle:idx = torch.randperm(x.shape[0])x = x[idx]y = y[idx]return x, yclass IrisDataset(Dataset):def __init__(self, mode='train', num_train=120, num_dev=15):super(IrisDataset, self).__init__()x, y = load_data(shuffle=True)if mode == 'train':self.x, self.y = x[:num_train], y[:num_train]elif mode == 'dev':self.x, self.y = x[num_train:num_train + num_dev], y[num_train:num_train + num_dev]else:self.x, self.y = x[num_train + num_dev:], y[num_train + num_dev:]def __getitem__(self, idx):return self.x[idx], self.y[idx]def __len__(self):return len(self.x)def init_rmsprop_states(feature_dim):s_w = torch.zeros((feature_dim, 3))s_b = torch.zeros(3)return (s_w, s_b)def rmsprop(params, states, hyperparams):gamma, eps = hyperparams['gamma'], 1e-6for p, s in zip(params, states):with torch.no_grad():s[:] = gamma * s + (1 - gamma) * torch.square(p.grad)p[:] -= hyperparams['lr'] * p.grad / torch.sqrt(s + eps)p.grad.data.zero_()# batch_size = 1
batch_size = 24
# batch_size = 120# 分别构建训练集、验证集和测试集
train_dataset = IrisDataset(mode='train')train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)lr = 0.02
train(rmsprop, init_rmsprop_states(4), {'lr': lr, 'gamma': 0.9}, train_loader, 4)

在这里插入图片描述

这篇关于【深度学习实验】网络优化与正则化(二):基于自适应学习率的优化算法详解:Adagrad、Adadelta、RMSprop的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/315878

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

uniapp接入微信小程序原生代码配置方案(优化版)

uniapp项目需要把微信小程序原生语法的功能代码嵌套过来,无需把原生代码转换为uniapp,可以配置拷贝的方式集成过来 1、拷贝代码包到src目录 2、vue.config.js中配置原生代码包直接拷贝到编译目录中 3、pages.json中配置分包目录,原生入口组件的路径 4、manifest.json中配置分包,使用原生组件 5、需要把原生代码包里的页面修改成组件的方

【Altium】查找PCB上未连接的网络

【更多软件使用问题请点击亿道电子官方网站】 1、文档目标: PCB设计后期检查中找出没有连接的网络 应用场景:PCB设计后期,需要检查是否所有网络都已连接布线。虽然未连接的网络会有飞线显示,但是由于布线后期整板布线密度较高,虚连,断连的网络用肉眼难以轻易发现。用DRC检查也可以找出未连接的网络,如果PCB中DRC问题较多,查找起来就不是很方便。使用PCB Filter面板来达成目的相比DRC

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

十四、观察者模式与访问者模式详解

21.观察者模式 21.1.课程目标 1、 掌握观察者模式和访问者模式的应用场景。 2、 掌握观察者模式在具体业务场景中的应用。 3、 了解访问者模式的双分派。 4、 观察者模式和访问者模式的优、缺点。 21.2.内容定位 1、 有 Swing开发经验的人群更容易理解观察者模式。 2、 访问者模式被称为最复杂的设计模式。 21.3.观察者模式 观 察 者 模 式 ( Obser