【CVPR2023】Learning A Sparse Transformer Network for Effective Image Deraining

本文主要是介绍【CVPR2023】Learning A Sparse Transformer Network for Effective Image Deraining,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述

论文:https://readpaper.com/paper/4736105248993591297

代码:https://github.com/cschenxiang/DRSformer

Transformer 模型通常使用标准的 QKV 三件套进行计算,但是部分来自 K 的 token 与来自 Q 的 token 并不相关,如果仍然对这些 token 进行特征聚合计算会影响图像修复的性能。

为了解决这个问题,该论文提出了一种Sparse Transformer网络(DRSformer),它可以自适应地保留最有用的自注意力值以进行特征聚合,从而更好地促进高质量的图像重建。论文框架如下图所示,个人感觉主要创新有两个方面:top-k sparse attention (TKSA) 和 mixed-scale feed-forward network (MSFN)。

请添加图片描述

top-k sparse attention (TKSA)

TKSA如下图所示,大体沿用了 Restormer 的思路,不同之处在于作者创建了一个mask,把相对不重要的 token 置0了。这个算法的思路来自于 NeurIPS 21 的论文《Chasing Sparsity in Vision Transformers: An End-to-End Exploration》,原文中说,稀疏训练甚至可以提高ViT的准确性,而不是降低性能。

请添加图片描述

该论文还附一个 pytorch 的伪代码,具体如下。在这个去雨的任务中,通过实验作者保留了[1/2, 4/5] 区间的 token。

请添加图片描述

mixed-scale feed-forward network (MSFN)

MSFN的结构如下图所示,与Restormer里不同的地方是,作者使用两个尺度的卷积

请添加图片描述
实验部分可以参考作者论文,这里不过多介绍。

这篇关于【CVPR2023】Learning A Sparse Transformer Network for Effective Image Deraining的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/315120

相关文章

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

lvgl8.3.6 控件垂直布局 label控件在image控件的下方显示

在使用 LVGL 8.3.6 创建一个垂直布局,其中 label 控件位于 image 控件下方,你可以使用 lv_obj_set_flex_flow 来设置布局为垂直,并确保 label 控件在 image 控件后添加。这里是如何步骤性地实现它的一个基本示例: 创建父容器:首先创建一个容器对象,该对象将作为布局的基础。设置容器为垂直布局:使用 lv_obj_set_flex_flow 设置容器

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

深度学习--对抗生成网络(GAN, Generative Adversarial Network)

对抗生成网络(GAN, Generative Adversarial Network)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。GAN主要用于生成数据,通过两个神经网络相互对抗,来生成以假乱真的新数据。以下是对GAN的详细阐述,包括其概念、作用、核心要点、实现过程、代码实现和适用场景。 1. 概念 GAN由两个神经网络组成:生成器(Generator)和判别器(D

Transformer从零详细解读

Transformer从零详细解读 一、从全局角度概况Transformer ​ 我们把TRM想象为一个黑盒,我们的任务是一个翻译任务,那么我们的输入是中文的“我爱你”,输入经过TRM得到的结果为英文的“I LOVE YOU” ​ 接下来我们对TRM进行细化,我们将TRM分为两个部分,分别为Encoders(编码器)和Decoders(解码器) ​ 在此基础上我们再进一步细化TRM的

LLM模型:代码讲解Transformer运行原理

视频讲解、获取源码:LLM模型:代码讲解Transformer运行原理(1)_哔哩哔哩_bilibili 1 训练保存模型文件 2 模型推理 3 推理代码 import torchimport tiktokenfrom wutenglan_model import WutenglanModelimport pyttsx3# 设置设备为CUDA(如果可用),否则使用CPU#

逐行讲解Transformer的代码实现和原理讲解:计算交叉熵损失

LLM模型:Transformer代码实现和原理讲解:前馈神经网络_哔哩哔哩_bilibili 1 计算交叉熵目的 计算 loss = F.cross_entropy(input=linear_predictions_reshaped, target=targets_reshaped) 的目的是为了评估模型预测结果与实际标签之间的差距,并提供一个量化指标,用于指导模型的训练过程。具体来说,交叉

Neighborhood Homophily-based Graph Convolutional Network

#paper/ccfB 推荐指数: #paper/⭐ #pp/图结构学习 流程 重定义同配性指标: N H i k = ∣ N ( i , k , c m a x ) ∣ ∣ N ( i , k ) ∣ with c m a x = arg ⁡ max ⁡ c ∈ [ 1 , C ] ∣ N ( i , k , c ) ∣ NH_i^k=\frac{|\mathcal{N}(i,k,c_{