机器人学之运动学笔记【6】—— 用抛物线过渡的线性插值轨迹规划方法

本文主要是介绍机器人学之运动学笔记【6】—— 用抛物线过渡的线性插值轨迹规划方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器人学之运动学笔记【6】—— 用抛物线过渡的线性插值轨迹规划方法

  • 1. 规划方式
  • 2. 加速度状态讨论
  • 3. 多段 Linear Function with Parabolic Blends
    • 3.1 中间段的轨迹规划
    • 3.2 头段的轨迹规划
    • 3.3 尾段的轨迹规划
    • 3.4 注解
    • 3.5 规划后轨迹并未通过 via points
  • 4. Cartesian Space下轨迹几何限制的几种情况
  • 5. 举个栗子

  • 上一篇博客所学内容是使用三次多项式作轨迹规划,规划出来的曲线都是曲线,在实际的应用当中,会遇到直线轨迹的情况,所以需要掌握能够实现直线轨迹的方法。
  • 轨迹中若包含多个直线段轨迹,线段间转折点速度就会不连续,需要有很大的加速度。
  • 本节学习内容就是学会如何在我们需要的直线轨迹的规划之上另外导入二次多项式的方式,让直线段跟直线段的轨迹之间能够以二次多项式曲线过渡。

在这里插入图片描述

1. 规划方式

在这里插入图片描述
一次多项式(linear)等速部分:
在这里插入图片描述
二次多项式(Parabolic )等加速部分:
在这里插入图片描述
联立两个式子求出 tb:

在这里插入图片描述
就可以求解出来我们在某个加速度的条件之下,大概需要多少时间可以把二次式跟一次式作一个圆滑切换,在求解 tb 过程中,当判别式≥0时,所解 tb 才是实数,即:
在这里插入图片描述

2. 加速度状态讨论

  • 加速度取最小值时,没有直线段,两段抛物线相连
    在这里插入图片描述
    在 tb 时刻的速度是原本无规划直接相连时速度的两倍
    在这里插入图片描述
  • 加速度小于最小值时

在这里插入图片描述
在这里插入图片描述

3. 多段 Linear Function with Parabolic Blends

针对于一般状况:一条有n个中间点的路径
将每一个区段 [θi,θi+1]各自等效到之前举例的单一 linear 线段[θ0,θf],但与此线段前后相连接的线段的速度不为0

在这里插入图片描述
下面要做的就是利用二次式把他们串接起来
注意参数设定的细节:
红色部分就是 via points

3.1 中间段的轨迹规划

把中间部分的轨迹放大后:
在这里插入图片描述

jk 段和 kl 段一次多项式的速度:
在这里插入图片描述
设定过渡抛物线加速度的方式有两个:

  • 方法一:设定一个加速度然后求解时间
    首先看设定的加速度该是正的还是负的,以这道题来看, jk 段的速度是负的,kl 段的速度是正的,那么加速度就应该是正的( sgn表示方向的确定),就可以求出过渡段所需时间 tk 是多久
    在这里插入图片描述
  • 方法二:设定过渡时间求解加速度(希望在这个时间内完成,反推所需的加速度)

在这里插入图片描述

3.2 头段的轨迹规划

把头部分的轨迹放大后:
在这里插入图片描述

假设θ0在时间等于0的上面,后续要以一个等速到达θ2,我们要为这个由θ0到θ2的过程补上一个二次式,那么这条抛物线只能加在t0左边,理论上这个抛物线所需的时间的长度会有一半在θ0左边,也就是说,在还没有开始之前就要做一个缓加速的动作,这样做在轨迹规划上会比较奇怪。

所以通常的处理方法是将起始点θ0在时间上往后移t1/2到θ1,以导入二次曲线段,让速度由起始点开始可以连续。在 t1/2 这个点,它仍然保持在θ1=θ0这个位置,这样就可以规划第一段和第二段的轨迹,第一段是一个等加速,第二段是等速。

  • 方法一:设定一个加速度然后求解时间
  • 方法二:设定一个时间然后求解加速度
    在这里插入图片描述

3.3 尾段的轨迹规划

处理方法和头部一样,增加一个 via point ,θn 和 θf 大小一样,但是 θn 发生的时间点前移 tn/2 。

在这里插入图片描述

3.4 注解

真实系统中可达到的加速度取决于许多因素:

  • 马达规格
  • 手臂姿态:手臂在不同姿态下,各轴所需承载(如重力)的扭力不同
  • 手臂动态状态:手臂在不同动态下,各轴需承载惯性力不同

3.5 规划后轨迹并未通过 via points

仅当加速度趋于无穷的时候,轨迹会通过via points
在这里插入图片描述

如果要求必须通过 via points ,那么虚拟 via points,让原本的 via points 落在 linear 段上,就会通过
在这里插入图片描述

刚刚已经学习了求解加速度以及相应的时间,下面来看看该怎么将轨迹用方程表示出来(针对同一个时间基准 t)

假设此刻时间 t 落在直线段里,它的轨迹应该是怎样呢?
假设此刻时间 t 落在抛物线段里,它的轨迹又应该是怎样呢?

在这里插入图片描述

4. Cartesian Space下轨迹几何限制的几种情况

case2:在等速轨迹中,状态3→4需要关节在短时间内经历非常剧烈的变化,马达的扭力可能无法达到

在这里插入图片描述

5. 举个栗子

在这里插入图片描述
以 linear function with parabolic blends 在 Cartesian-space 下规划轨迹

在Cartesian-space 下规划轨迹,就说明在x、y和θ 下面规划,因为定义的 initial、final和via points 本身就在Cartesian-space 下,所以不需要做IK,可以直接以给定的点各自去做规划,将x、y和θ 三个自由度分开做。

第一步找出过程中所有线段的速度和加速度,有四个点,所以会有三个直线段,中间就会有三个linear function 的速度段要求解,有四个二次项段要求解,把这些段落的速度和加速度求解出来

第一步:分别求解三个自由度的速度,有了各自由度在各个点的速度后,这些速度的差异就是我们需要的加速度

在这里插入图片描述

这样方程式的系数就得到了,下一步的关键就是将方程依据绝对的世界时间写出来。
在这里插入图片描述
以上过程就是以 x 自由度为例把整段轨迹的参数式以绝对的时间坐标写出来。

在这里插入图片描述
到此为止,有了Cartesian-space 下的轨迹,真正要操作手臂的话,就必须先 IK,把x、y、θ通过IK解算出各个关节的角度

在这里插入图片描述

这篇关于机器人学之运动学笔记【6】—— 用抛物线过渡的线性插值轨迹规划方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314227

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定