论文详解——GeoNet:Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose

本文主要是介绍论文详解——GeoNet:Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

    商汤科技在CVPR2018的一篇《GeoNet:Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose》,提出了一种可以联合学习深度、光流和相机姿态的无监督学习框架GeoNet,取得了超越了之前的无监督学习方法并且可与最佳监督学习方法的效果。

相关工作:

    理解视频中的3D场景几何是视觉感知领域内的一项基本任务,其中包括很多经典的计算机视觉任务,例如深度恢复、流估计、视觉里程计(visual odometry)。这些技术都有广泛的工业应用,包括自动驾驶平台、交互式协作机器人以及定位与导航等。

    传统的根据运动恢复结构(SfM:Structure from Motion)方法是以一种集成式的方式来解决这些任务,其目标是同时重建场景结构和相机运动。但是,这种方法本质上是依赖于高质量的低层次特征对应,所以容易受到异常值和无纹理区域的影响。

    为了突破这个局限性,将深度学习模型应用到了每个低层面的子问题上,并且取得了一定的效果。其主要优势来源于大数据,有助于为低层面的线索学习获取高层面的语义对应(即能学习到更高层面的语义线索)。相比于传统方法,即使在ill-posed区域,也能有比较好的表现。但是通常需要大量的groundtruth进行有监督的学习,需要昂贵的激光雷达和查分GPS设备,数据获取和标注成本很高。此外,之前的深度学习模型大都是为解决单个特定任务而设计的,比如深度、光流、相机姿态等,而没有去讨论这些任务之间的几何约束和关联性

关键点:

    在这篇文章中提出的无监督学习框架GeoNet能够从视频中联合学习单目深度、光流和相机运动。这种方法的理论基础在于3D场景几何的本质特性。直观的解释就是——3D场景都是由静态背景和动态目标构成的。大多数的自然场景都是由刚性静态表面组成,如道路、房屋、树木等,它们在视频帧之间的2D投影图像完全由深度结构和相机运动决定。同时,在这些场景中也包含运动的对象,例如行人、车辆等,他们的运动由相机运动和自身的运动共同决定,可以用光流模拟相机运动。

主要贡献有两点:

1.采用了一种“分而治之”的策略,分别学习刚性流和物体运动。在每个阶段用视图合成(view synthesis)与原图的相似度误差来引导与监督学习。

2.引入了自适应几何一致性损失,通过前向-反向一致性检查,自动过滤遮挡和可能的异常值。

网络结构:

    GeoNet的网络结构包含两个部分:刚性结构重构器和非刚性结构定位器,分别来学习刚性流和物体运动,在整个无监督学习的过程中,采用图像外观相似度来引导。

具体的网络结构,详见另一篇博客点击打开链接。


Stage 1 —— Rigid Structure Reconstructor

   在第一部分Rigid Structure Reconstructor,包括两个子网络DepthNet和PoseNet,分别回归出深度图和相机姿态,并融合产生刚性流。

   DepthNet采用了编码器encodr+解码器decoder的结构,编码器部分以ResNet50作为基本结构,解码器部分由反卷积层构成,并且在encoder和decoder之间的不同分辨率上采用了skip connections,进行了多尺度下的预测。这样能够同时保留全局高层次特征和局部细节信息。训练数据是一组时间上连续的视频帧(已知相机内参),其中I(t)是目标帧,作为参考帧,其他帧都是源帧I(s)。DepthNet回归得到不同分辨率下的深度图(原图大小,1/2,1/4,1/8)—— D(t)。

    PoseNet包含8个卷积层,在输出最终预测结果之前有一个全局平均池化层。在除了输出层之外的卷积层之间都采用了Batch Normalization和ReLUs激活函数。同样也是预测出四个不同分辨率下的相机6DoF(xyz坐标和欧拉角),记为T(t-s)。注意,预测结果是6DoF,是一个长度为6的一维向量,但是在公式中T(t-s)代表的是从目标帧到源帧的变换矩阵(4*4),变换矩阵可由6DoF通过变换得到!!!

   有了深度和相机姿态,则可以计算出刚性流:

这篇关于论文详解——GeoNet:Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/309870

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML