ArcGIS笔记13_利用ArcGIS制作岸线与水深地形数据?建立水动力模型之前的数据收集与处理?

本文主要是介绍ArcGIS笔记13_利用ArcGIS制作岸线与水深地形数据?建立水动力模型之前的数据收集与处理?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文目录

  • 前言
  • Step 1 岸线数据
  • Step 2 水深地形数据
  • Step 3 其他数据及资料

前言

利用MIKE建立水动力模型详见【MIKE水动力笔记】系列)之前,需要收集、处理和制作诸多数据和资料,主要有岸线数据、水深地形数据、开边界潮位驱动数据、风场数据、潮位和海流观测资料和站点潮汐调和常数资料等。本篇主要介绍这些资料的获取与处理。
其中岸线数据和水深地形数据用于制作海洋数值模型网格;有了网格,结合开边界潮位驱动数据和风场数据的输入,根据实际海岸海洋环境条件进行控制方程的选择和模型的概化处理,进而搭建起初步的数值模型;然后通过对比潮位和海流观测资料、站点潮汐调和常数资料等,进行模型的率定和验证,验证结果良好后,方可进入下一步的正式模拟阶段。

Step 1 岸线数据

通常来讲,岸线数据有多种获取方法,大致可分为两类方法。第一类是通过一些岸线数据公开资源库来下载获取,例如美国国家海洋和大气管理局有一个叫做Geodas的数据库,可以方便的提取全球尺度的岸线,但这种方法获取的岸线精度偏低,更适合大尺度范围的海洋研究。第二类是通过遥感影像自己来提取或绘制岸线进而制作模型岸线数据,这种方法获取的岸线数据精度很高,适合本项目研究的精度需求。

具体操作是,首先下载该区域的遥感影像,遥感影像主要采用美国陆地卫星Landsat系列,如下图。在保证影像质量的前提下,选择大潮高潮时期且云量较小的影像数据。影像时相选用两个,一个用来提取岸线,一个用来精度验证。所有影像数据均在ENVI中进行预处理,校正配准的误差在半个像元内,采用标准假彩色显示,以便更易识别影像数据。

在这里插入图片描述

然后进行影像的解译与岸线识别,如果该研究区域较小,可以采用人工目视解译,在ArcGIS中绘制出海岸线,等间距转点得到岸线散点坐标,如下图。然后对岸线数据进行验证,据前人研究结果表明(侯西勇等, 2014),基于30 m分辨率的遥感影像岸线提取最大允许误差为28.28 m,抽取适当标志点进行验证,平均误差小于理论最大允许误差表明满足研究精度需要。

在这里插入图片描述

Step 2 水深地形数据

水深地形数据的获取,同样的,水深地形数据的获取来源也有多种,第一种是也是跟岸线数据一样通过公开资源库获取,精确度上同样偏低,不适合本项目研究;第二种是通过航保部出版的海图资料获取;第三种就是通过一定数目的已知水深点进行插值处理获取,这种方法取决于已知水深点的数目和质量,大范围整体趋势较好,但局部小区域也易出现插值结果不理想的情况,需要在后面模型验证的时候优化这个问题。

水深地形数据获取的具体操作是,首先如果手头已有一部分实测断面数据,可以采用这些数据,然后这里还可以借助了另外的两份数据,一个是刚刚介绍自己绘制得到的岸线数据,因为岸线就相当于水深值为0的点,也相当于已知水深点了;另一个就是前人文献资料中绘制的水深图,参考前人学者论文中的资料,提取其中部分等深线上的点作为一部分已知点。上述的这些已知水深点都需要进行坐标系和基准面的统一。如下图

在这里插入图片描述

接下来就在ArcGIS中进行克里金插值获取水深DEM(digital elevation model)模型,如下图

在这里插入图片描述

对DEM的数据进行5%抽样验证,计算NSE和RMSE看验证结果是否良好。这里的NSE是指纳什模型效率系数,大于0.5表明模型拟合较好,大于0.65表明模型拟合极好,RMSE是指均方根误差,后面在验证潮位和海流时也是用这两个评价指标。

Step 3 其他数据及资料

然后是开边界潮位驱动数据,数据来源于TPXO 9全球潮汐预报模型,基于此制作dfs1时间序列数据,用于后面水动力模型构建过程中的潮位驱动加载。确定数据时长,同时进行了格林威治8小时时间差调整。

风场数据是通过ECMWF公开数据库获取,数据包含了风场u分量、v分量和大气压力值的逐日数据,确定数据精度和数据时长。如下图

在这里插入图片描述

接下来是潮位观测数据和海流观测数据。潮位及海流观测数据主要用于模型的率定及验证。

潮位观测数据主要通过国家海洋信息中心全球潮汐预报服务平台(http://global-tide.nmdis.org.cn)获取,收集研究区内的潮位站点数据,平台最多可显示3天的预报,也就是每个站点数据时长最大能达72 h。如下图。

在这里插入图片描述

在这里插入图片描述

至于海流观测数据,尽量通过ADCP实测获取的,如果没有的话,也可以找找国家海洋信息中心全球潮汐预报服务平台,如果没有海流站点,那也可以采用前人文献中的历史海流观测数据,数字化这份数据即可。

调和常数观测数据的获取也是采用此方法,如果没有实测资料的话,也可以采用前人文献中的数据。也可以画出同潮图与前人所绘制的进行对比。

希望能帮助到大家!


以上就是全部内容啦~

希望可以得到你的赞,非常感谢!

这篇关于ArcGIS笔记13_利用ArcGIS制作岸线与水深地形数据?建立水动力模型之前的数据收集与处理?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/305168

相关文章

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G