LangChain+LLM实战---BERT主要的创新之处和注意力机制中的QKV

2023-10-29 15:36

本文主要是介绍LangChain+LLM实战---BERT主要的创新之处和注意力机制中的QKV,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BERT主要的创新之处

BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer架构的预训练语言模型,由Google在2018年提出。它的创新之处主要包括以下几个方面:

  • 双向性(Bidirectional):BERT是第一个采用双向Transformer架构进行预训练的模型。传统的语言模型如GPT(Generative Pre-trained Transformer)只能根据上下文左边的词预测当前词,而BERT引入了Masked Language Model(MLM)任务,将一部分输入文本中的词进行遮盖,然后通过双向Transformer来预测这些被遮盖的词,从而使模型能够同时获得左侧和右侧的上下文信息。
  • 预训练与微调(Pretraining and Fine-tuning):BERT采用两阶段的训练方法。首先,在大规模的未标记数据上进行预训练,通过预测被遮盖的词和句子级别的任务来学习通用的语言表示。然后,在特定任务上进行微调,使用标记的数据集来进一步调整模型参数,使其适应具体的下游任务,如文本分类、命名实体识别等。
  • 预训练任务的多样性(Diverse Pretraining Tasks):为了提高模型的泛化能力,BERT使用了多个预训练任务。除了MLM任务外,BERT还引入了句子级别的任务,即Next Sentence Prediction(NSP)。NSP任务要求模型判断两个句子是否是连续的,并学习句子级别的语义关系。这样的多样性任务设计使得BERT能够学习到更丰富的语言表示。
  • Masked Language Model(MLM):BERT中的MLM任务是通过将输入文本中的一部分词进行随机遮盖来训练模型。这样做的好处是模型需要通过上下文信息来预测被遮盖的词,从而更好地理解词之间的关联性和语义。MLM任务的引入使得BERT能够学习到更深层次的语言表示。
  • 多层表示与多任务学习(Multi-layer Representation and Multi-task Learning):BERT采用了多层Transformer编码器来编码输入序列的信息。这些编码器层之间可以进行信息的传递和交互,从而丰富了表示的表达能力。同时,BERT还可以通过微调阶段的多任务学习来提高模型的泛化性能,将不同的下游任务作为辅助任务来共同训练模型,使得模型能够学习到更通用的语言表示。

注意力机制中的QKV

在注意力机制(Attention Mechanism)中,Q、K和V代表查询(Query)、键(Key)和值(Value)。

  • 查询(Query)(表示为Q):查询是用于指定要关注的特定位置或特征的向量。在注意力机制中,查询向量用于计算与其他位置或特征的相似度,并决定在注意力权重计算中的重要程度。
  • 键(Key)(表示为K):键向量用于提供与查询向量的相似度比较。它可以看作是提供参考信息的向量。
  • 值(Value)(表示为V):值向量是根据注意力权重进行加权求和的向量。它包含了要传递给下一步的信息。

在注意力机制中,通过计算查询向量(Q)与键向量(K)之间的相似度,然后使用归一化的相似度得到注意力权重。最后,使用注意力权重对值向量(V)进行加权求和,得到最终的上下文表示或注意力输出。

注意力机制的计算可以用以下公式表示:

Attention(Q, K, V) = softmax(QK^T / sqrt(d_k))V

其中,d_k是查询和键的维度。softmax函数用于归一化相似度,使得注意力权重的总和为1。除以sqrt(d_k)是为了缩放相似度,以确保在计算过程中避免梯度爆炸或梯度消失的问题

这篇关于LangChain+LLM实战---BERT主要的创新之处和注意力机制中的QKV的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301611

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.