Python进行多输出(多因变量)回归:集成学习梯度提升决策树GRADIENT BOOSTING,GBR回归训练和预测可视化...

本文主要是介绍Python进行多输出(多因变量)回归:集成学习梯度提升决策树GRADIENT BOOSTING,GBR回归训练和预测可视化...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:http://tecdat.cn/?p=25939

在之前的文章中,我们研究了许多使用 多输出回归分析的方法。在本教程中,我们将学习如何使用梯度提升决策树GRADIENT BOOSTING REGRESSOR拟合和预测多输出回归数据。对于给定的 x 输入数据,多输出数据包含多个目标标签。本教程涵盖:

  • 准备数据

  • 定义模型

  • 预测和可视化结果

我们将从加载本教程所需的库开始。

准备数据

首先,我们将为本教程创建一个多输出数据集。它是随机生成的数据,具有以下一些规则。该数据集中有三个输入和两个输出。我们将绘制生成的数据以直观地检查它。

f = plt.figure()
f.add_subplot(1,2,1)
plt.title("Xs 输入数据")
plt.plot(X)

5d3c246180003e3b812cb9d48c3dd9de.png

接下来,我们将数据集拆分为训练和测试部分并检查数据形状。

print("xtrain:", xtrain.shape, "ytrian:", ytrain.shape)

4a9dc8ab2ec734611fd24465266046fe.png


点击标题查阅往期内容

c3f7a5502d0eda5d3e3748e7a63eaf57.jpeg

R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

outside_default.png

左右滑动查看更多

outside_default.png

01

7e7beb5b87481bb83ef519fb59329240.gif

02

e443f2aad2b2d3fdb25e99ccdc19f2a4.gif

03

a5f843be0d7da1fa6b8dd62f9c3ef051.gif

04

ad6b050abade96affb63e05fa5e0188e.png

定义模型

我们将定义模型。作为估计,我们将使用默认参数实现。可以通过 print 命令查看模型的参数。

model = MutRer(es=gbr)
print(model )

42de4be58524e76d6f6bf13a5913e85e.png

现在,我们可以用训练数据拟合模型并检查训练结果。

fit(xtrain, ytrain)
score(xtrain, ytrain)

ea358dd01825c30908c8e6da2d6d933a.png

预测和可视化结果 

我们将使用经过训练的模型预测测试数据,并检查 y1 和 y2 输出的 MSE 率。

predict

3ed003b847cac489fcb88935ce76628b.png
最后,我们将在图中可视化结果并直观地检查它们。

xax = range(len)
plt.plot
plt.legend

abd81200dfe7f218fdb23dbe80bbd60a.png

在本教程中,我们简要学习了如何在 Python 中训练了多输出数据集和预测的测试数据。


e2cba11fc608a2dfa4cf3c16e73a6e86.png

本文摘选Python进行多输出(多因变量)回归:集成学习梯度提升决策树GRADIENT BOOSTING REGRESSOR回归训练和预测可视化,点击“阅读原文”获取全文完整资料。


点击标题查阅往期内容

样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

PYTHON集成学习:自己编写构建ADABOOST分类模型可视化决策边界及SKLEARN包调用比较

PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像

PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化

R语言集成模型:提升树boosting、随机森林、约束最小二乘法加权平均模型融合分析时间序列数据

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析

R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化

R语言基于树的方法:决策树,随机森林,Bagging,增强树

R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测

spss modeler用决策树神经网络预测ST的股票

R语言中使用线性模型、回归决策树自动组合特征因子水平

R语言中自编基尼系数的CART回归决策树的实现

R语言用rle,svm和rpart决策树进行时间序列预测

python在Scikit-learn中用决策树和随机森林预测NBA获胜者

python中使用scikit-learn和pandas决策树进行iris鸢尾花数据分类建模和交叉验证

R语言里的非线性模型:多项式回归、局部样条、平滑样条、 广义相加模型GAM分析

R语言用标准最小二乘OLS,广义相加模型GAM ,样条函数进行逻辑回归LOGISTIC分类

R语言ISLR工资数据进行多项式回归和样条回归分析

R语言中的多项式回归、局部回归、核平滑和平滑样条回归模型

R语言用泊松Poisson回归、GAM样条曲线模型预测骑自行车者的数量

R语言分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测

欲获取全文文件,请点击左下角“阅读原文”。

c9dc5e2c2714c2421f5e4194ad1b95e3.gif

1f84af466aa9db9dfcc346887086d146.png

1a1b7ad49ca7e283d91d3ec707ba9b1c.jpeg

fc0290207e090353daa1fa07b2a1bb6c.png

这篇关于Python进行多输出(多因变量)回归:集成学习梯度提升决策树GRADIENT BOOSTING,GBR回归训练和预测可视化...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/300327

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu