1.提升方法是将弱学习算法提升为强学习算法的统计学习方法。在分类学习中,提升方法通过反复修改训练数据的权值分布,构建一系列基本分类器(弱分类器),并将这些基本分类器线性组合,构成一个强分类器。代表性的提升方法是AdaBoost算法。 AdaBoost模型是弱分类器的线性组合: f ( x ) = ∑ m = 1 M α m G m ( x ) f(x)=\sum_{m=1}^{M} \alp
代码见:JordanAsh/boostresnet: A PyTorch implementation of BoostResNet 原始论文:Huang F, Ash J, Langford J, et al. Learning deep resnet blocks sequentially using boosting theory[C]//International Conference
Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法。其核心思想和基本步骤如下: (1) 采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样。 (2) 根据抽出的样本计算给定的统计量T。
一. 知识点 Bias-Variance Tradeoff bias-variance是分析boosting和bagging的一个重要角度,首先讲解下Bias-Variance Tradeoff. 假设training/test数据集服从相似的分布,即 yi=f(xi)+ϵi, y i = f ( x i ) + ϵ i , y_i = f(x_i) + \epsilo
Boosting算法揭秘:从原理到scikit-learn实战 在机器学习的江湖中,Boosting算法以其强大的预测能力和独特的训练方式占据了一席之地。与Bagging算法并行训练的理念不同,Boosting算法更注重模型的串行迭代和错误修正。本文将从Boosting算法的基本原理出发,逐步深入到scikit-learn中的Boosting实现,并提供一些技术细节和最佳实践的见解。 1. B