【机器学习】集成学习的基本概念、Bagging和Boosting的区别以及集成学习方法在python中的运用(含python代码)

本文主要是介绍【机器学习】集成学习的基本概念、Bagging和Boosting的区别以及集成学习方法在python中的运用(含python代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

集成学习是一种机器学习方法,它通过结合多个基本模型(通常称为“弱学习器”)来构建一个更加强大或更可靠的模型(“强学习器”)

文章目录

  • 引言
  • 一、集成学习
    • 1.1 集成学习的核心思想
    • 1.2 常见的集成学习方法
      • 1.2.1 Bagging(装袋)
      • 1.2.2 Boosting(提升)
      • 1.2.3 Stacking(堆叠)
    • 1.3 集成学习的优势
    • 1.4 集成学习的挑战
    • 1.5 总结
  • 二、Bagging和Boosting的区别
    • 2.1 Bagging(装袋)
      • 2.1.1 并行处理
      • 2.1.2 降低方差
      • 2.1.3 代表性算法
      • 2.1.4 投票/平均
      • 2.1.5 样本权重
    • 2.2 Boosting(提升)
      • 2.2.1 顺序处理
      • 2.2.2 降低偏差
      • 2.2.3 代表性算法
      • 2.2.4 加权投票/组合
      • 2.2.5 样本权重
    • 2.3 主要区别
    • 2.4 总结
  • 三、集成学习在python中的实例
    • 3.1 使用随机森林(Random Forest)
    • 3.2 使用AdaBoost
    • 3.3 代码解释

在这里插入图片描述

一、集成学习

1.1 集成学习的核心思想

集成学习的目的是通过组合多个模型来提高预测的准确率或泛化能力。这种方法通常能够减少单个模型的偏差和方差,从而得到更好的性能

1.2 常见的集成学习方法

1.2.1 Bagging(装袋)

例如随机森林(Random Forest),它通过随机抽取样本和特征来构建多个独立的决策树,并通过投票或平均来聚合这些树的预测结果

1.2.2 Boosting(提升)

例如AdaBoost、XGBoost和LightGBM,这些方法通过迭代地训练模型来关注前一个模型错误分类的样本,每个新模型都尝试修正前一个模型的错误

1.2.3 Stacking(堆叠)

这种方法将多个不同的模型组合起来,通常包括两层模型,第一层是多个不同的基础模型,第二层是一个元模型,用于综合这些基础模型的输出

1.3 集成学习的优势

  • 提高预测性能:集成学习通常能够获得比单个模型更好的预测结果
  • 降低过拟合风险:通过结合多个模型,可以减少单个模型可能出现的过拟合问题
  • 增强模型的泛化能力:集成学习能够更好地处理未知数据

1.4 集成学习的挑战

  • 计算成本:集成学习通常需要训练多个模型,因此计算成本较高
  • 模型复杂度:集成模型可能比单个模型更难以解释和理解

1.5 总结

集成学习在许多机器学习任务中都是一种非常有效的策略,尤其是在数据量较大、特征较多或者模型需要高度精确的情况下。通过合理地选择和组合不同的学习器,集成学习能够显著提升机器学习任务的性能

二、Bagging和Boosting的区别

Bagging(装袋)和Boosting(提升)都是集成学习的两种主要技术,但它们在方法和工作原理上存在显著差异

2.1 Bagging(装袋)

2.1.1 并行处理

Bagging通过随机抽样(通常是放回抽样)来构建多个独立的模型,这些模型可以并行训练

2.1.2 降低方差

Bagging主要用于降低模型的方差,特别是对于那些容易过拟合的模型来说效果显著

2.1.3 代表性算法

随机森林(Random Forest)是Bagging的一个典型实现,它通过随机选择特征子集来进一步引入多样性

2.1.4 投票/平均

在预测时,Bagging通常采用简单多数投票(对于分类问题)或平均(对于回归问题)来聚合各个模型的预测结果

2.1.5 样本权重

在Bagging中,每个样本的权重是相等的,因为每个模型都在整个数据集的不同子集上进行训练

2.2 Boosting(提升)

2.2.1 顺序处理

Boosting是一种顺序技术,每个新模型都是基于前一个模型的性能来训练的,通常关注于前一个模型错误分类的样本

2.2.2 降低偏差

Boosting主要用于减少模型的偏差,通过逐步聚焦于难分样本,最终组合出一个强学习器

2.2.3 代表性算法

AdaBoost、XGBoost和LightGBM都是Boosting技术的代表

2.2.4 加权投票/组合

在预测时,Boosting会给不同的模型分配不同的权重,这些权重通常基于模型在训练集上的表现

2.2.5 样本权重

Boosting会给训练样本分配不同的权重,随着迭代的进行,错误分类的样本权重会增加,使得后续的模型更加关注这些样本

2.3 主要区别

  • 样本使用方式:Bagging使用的是随机抽样,而Boosting会给样本分配不同的权重
  • 训练过程:Bagging的模型可以并行训练,而Boosting的模型需要顺序训练
  • 目的:Bagging主要用于降低模型的方差,而Boosting主要用于降低模型的偏差
  • 结果聚合:Bagging通常采用简单的投票或平均来聚合结果,而Boosting则根据模型的表现来加权聚合结果

2.4 总结

总的来说,Bagging和Boosting都是有效的集成学习策略,但它们适用的场景和解决问题的侧重点不同。在实际应用中,选择哪种技术取决于具体的数据集和问题

三、集成学习在python中的实例

下面是一个使用Python中的scikit-learn库实现集成学习的简单实例。这个例子将展示如何使用随机森林(Bagging的一个实例)和AdaBoost(Boosting的一个实例)来对葡萄酒数据集进行分类

3.1 使用随机森林(Random Forest)

from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report# 加载数据集
wine = load_wine()
X, y = wine.data, wine.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建随机森林分类器
rf = RandomForestClassifier(n_estimators=100, random_state=42)# 训练模型
rf.fit(X_train, y_train)# 在测试集上进行预测
y_pred_rf = rf.predict(X_test)# 计算准确率
accuracy_rf = accuracy_score(y_test, y_pred_rf)
print(f"随机森林准确率: {accuracy_rf:.2f}")# 输出分类报告
print("随机森林分类报告:\n", classification_report(y_test, y_pred_rf))

输出结果:
在这里插入图片描述

3.2 使用AdaBoost

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
# 加载数据集
wine = load_wine()
X, y = wine.data, wine.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建决策树分类器作为基分类器
dt = DecisionTreeClassifier(max_depth=1)# 创建AdaBoost分类器
ada = AdaBoostClassifier(estimator=dt, n_estimators=50, random_state=42)# 训练模型
ada.fit(X_train, y_train)# 在测试集上进行预测
y_pred_ada = ada.predict(X_test)# 计算准确率
accuracy_ada = accuracy_score(y_test, y_pred_ada)
print(f"AdaBoost准确率: {accuracy_ada:.2f}")# 输出分类报告
print("AdaBoost分类报告:\n", classification_report(y_test, y_pred_ada))

输出结果:
在这里插入图片描述

3.3 代码解释

在这个例子中,我们首先使用随机森林对葡萄酒数据集进行分类,然后使用AdaBoost进行分类。两种方法都通过train_test_split函数划分了训练集和测试集,并使用accuracy_score函数计算了在测试集上的准确率

这些代码块提供了集成学习在Python中的基本用法,展示了如何使用Bagging和Boosting技术来构建分类器

这篇关于【机器学习】集成学习的基本概念、Bagging和Boosting的区别以及集成学习方法在python中的运用(含python代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137435

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施: