基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)

本文主要是介绍基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

        梯度提升(Gradient Boosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。

梯度提升分类的工作原理

        梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:

  1. 初始化模型:选择一个初始预测器,这里使用DummyClassifier来作为第一个模型。
  2. 计算梯度:计算每个样本的梯度,梯度是当前预测值与真实标签之间的差异。
  3. 训练新预测器:用计算得到的梯度作为目标,训练一个新的分类器。
  4. 更新模型:将新预测器的结果加到现有模型中。
  5. 重复步骤:重复上述步骤,逐步添加更多的预测器以改进模型的分类能力。

二分类示例

        在二分类任务中,梯度提升分类器的工作流程如下:

  1. 预测概率:通过softmax将预测值转换为概率。
  2. 更新模型:利用当前的梯度来训练下一个分类器。

代码示例

        下面的代码示例展示了如何实现一个梯度提升分类器,包括支持二分类和多分类任务:

from sklearn.tree import DecisionTreeRegressor
from sklearn.dummy import DummyRegressor, DummyClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits, load_breast_cancer
import numpy as npclass GradientBoosting:def __init__(self, S=5, learning_rate=1, max_depth=1, min_samples_split=2, regression=True, tol=1e-4):self.S = Sself.learning_rate = learning_rateself.max_depth = max_depthself.min_samples_split = min_samples_splitself.regression = regression# 初始化回归树tree_params = {'max_depth': self.max_depth, 'min_samples_split': self.min_samples_split}self.models = [DecisionTreeRegressor(**tree_params) for _ in range(S)]if regression:# 回归模型的初始模型self.models.insert(0, DummyRegressor(strategy='mean'))else:# 分类模型的初始模型self.models.insert(0, DummyClassifier(strategy='most_frequent'))def grad(self, y, h):return y - hdef fit(self, X, y):# 训练第一个模型self.models[0].fit(X, y)for i in range(self.S):# 预测yhat = self.predict(X, self.models[:i+1], with_argmax=False)# 计算梯度gradient = self.grad(y, yhat)# 训练下一个模型self.models[i+1].fit(X, gradient)def predict(self, X, models=None, with_argmax=True):if models is None:models = self.modelsh0 = models[0].predict(X)boosting = sum(self.learning_rate * model.predict(X) for model in models[1:])yhat = h0 + boostingif not self.regression:# 使用softmax转换为概率yhat = np.exp(yhat) / np.sum(np.exp(yhat), axis=1, keepdims=True)if with_argmax:yhat = np.argmax(yhat, axis=1)return yhat# 示例:使用乳腺癌数据集进行二分类
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建和训练梯度提升分类器
gb = GradientBoosting(S=50, learning_rate=0.1, regression=False)
gb.fit(X_train, y_train)# 预测并计算准确率
y_pred = gb.predict(X_test)
from sklearn.metrics import accuracy_score
print(f'Accuracy: {accuracy_score(y_test, y_pred)}')

总结

        梯度提升分类器通过逐步减少分类错误来提高模型的性能。这种方法在处理分类任务时,能够有效提高预测准确率。与回归任务类似,分类任务中的梯度提升也能通过逐步添加预测器来优化模型。通过调整学习率和模型参数,我们可以进一步提高模型的表现。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127325

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文