基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)

本文主要是介绍基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

        梯度提升(Gradient Boosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。

梯度提升分类的工作原理

        梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:

  1. 初始化模型:选择一个初始预测器,这里使用DummyClassifier来作为第一个模型。
  2. 计算梯度:计算每个样本的梯度,梯度是当前预测值与真实标签之间的差异。
  3. 训练新预测器:用计算得到的梯度作为目标,训练一个新的分类器。
  4. 更新模型:将新预测器的结果加到现有模型中。
  5. 重复步骤:重复上述步骤,逐步添加更多的预测器以改进模型的分类能力。

二分类示例

        在二分类任务中,梯度提升分类器的工作流程如下:

  1. 预测概率:通过softmax将预测值转换为概率。
  2. 更新模型:利用当前的梯度来训练下一个分类器。

代码示例

        下面的代码示例展示了如何实现一个梯度提升分类器,包括支持二分类和多分类任务:

from sklearn.tree import DecisionTreeRegressor
from sklearn.dummy import DummyRegressor, DummyClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits, load_breast_cancer
import numpy as npclass GradientBoosting:def __init__(self, S=5, learning_rate=1, max_depth=1, min_samples_split=2, regression=True, tol=1e-4):self.S = Sself.learning_rate = learning_rateself.max_depth = max_depthself.min_samples_split = min_samples_splitself.regression = regression# 初始化回归树tree_params = {'max_depth': self.max_depth, 'min_samples_split': self.min_samples_split}self.models = [DecisionTreeRegressor(**tree_params) for _ in range(S)]if regression:# 回归模型的初始模型self.models.insert(0, DummyRegressor(strategy='mean'))else:# 分类模型的初始模型self.models.insert(0, DummyClassifier(strategy='most_frequent'))def grad(self, y, h):return y - hdef fit(self, X, y):# 训练第一个模型self.models[0].fit(X, y)for i in range(self.S):# 预测yhat = self.predict(X, self.models[:i+1], with_argmax=False)# 计算梯度gradient = self.grad(y, yhat)# 训练下一个模型self.models[i+1].fit(X, gradient)def predict(self, X, models=None, with_argmax=True):if models is None:models = self.modelsh0 = models[0].predict(X)boosting = sum(self.learning_rate * model.predict(X) for model in models[1:])yhat = h0 + boostingif not self.regression:# 使用softmax转换为概率yhat = np.exp(yhat) / np.sum(np.exp(yhat), axis=1, keepdims=True)if with_argmax:yhat = np.argmax(yhat, axis=1)return yhat# 示例:使用乳腺癌数据集进行二分类
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建和训练梯度提升分类器
gb = GradientBoosting(S=50, learning_rate=0.1, regression=False)
gb.fit(X_train, y_train)# 预测并计算准确率
y_pred = gb.predict(X_test)
from sklearn.metrics import accuracy_score
print(f'Accuracy: {accuracy_score(y_test, y_pred)}')

总结

        梯度提升分类器通过逐步减少分类错误来提高模型的性能。这种方法在处理分类任务时,能够有效提高预测准确率。与回归任务类似,分类任务中的梯度提升也能通过逐步添加预测器来优化模型。通过调整学习率和模型参数,我们可以进一步提高模型的表现。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127325

相关文章

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp