光流 GMA : Learning to Estimate Hidden Motions with Global Motion Aggregation

本文主要是介绍光流 GMA : Learning to Estimate Hidden Motions with Global Motion Aggregation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GMA的架构

在这里插入图片描述
        文中的的全局运动聚合(GMA)模块包含在阴影框中,这是RAFT的一个独立附加模块,具有较低的计算开销,可显著提高性能。它将视觉上下文特征和运动特征作为输入,并输出聚合的运动特征,这些特征在整个图像中共享信息。然后将这些聚合的全局运动特征与局部运动特征和视觉上下文特征连接起来,由GRU解码为剩余流。这使网络能够根据特定像素位置的需要,灵活地选择或组合局部和全局运动特征。例如,局部图像证据较差的位置(例如由遮挡引起)可能会优先考虑全局运动特征。GMA的详细示意图如下图所示:
在这里插入图片描述

RAFT

R A F T : { 编码层:从两个输入图像中提取每像素特征的特征编码器,以及仅从 I 1 中提取特征的上下文编码器。 相关层 : 通过取所有特征向量对的内积来构造 4 D W × H × W × H 相关矩阵。 4 D 体积的最后 2 维在多个尺度上汇集,以构建多尺度信息。 一种更新算子,通过使用当前估计值从 4 D 相关矩阵集合中查找值,反复更新光流。 RAFT: \left\{\begin{array}{l}编码层:从两个输入图像中提取每像素特征的特征编码器,以及仅从I_1中提取特征的上下文编码器。\\ 相关层:通过取所有特征向量对的内积来构造4D W×H×W×H相关矩阵。4D体积的最后2维在多个尺度上汇集,以构建多尺度信息。\\ 一种更新算子,通过使用当前估计值从4D相关矩阵集合中查找值,反复更新光流。 \end{array}\right. RAFT: 编码层:从两个输入图像中提取每像素特征的特征编码器,以及仅从I1中提取特征的上下文编码器。相关层:通过取所有特征向量对的内积来构造4DW×H×W×H相关矩阵。4D体积的最后2维在多个尺度上汇集,以构建多尺度信息。一种更新算子,通过使用当前估计值从4D相关矩阵集合中查找值,反复更新光流。

在这里插入图片描述

GMA的论文观点

在这里插入图片描述
        Geoffrey Hinton在1976年的第一篇论文中写道,“必须通过找到最佳的全球解释来解决局部歧义”[13]。这种想法在现代深度学习时代仍然适用。为了解决遮挡造成的歧义,我们的核心思想是允许网络在更高的层次上推理,也就是说,在隐式推理了哪些像素在外观特征空间中是相似的之后,全局聚合相似像素的运动特征。我们假设,通过在参考框架中寻找具有相似外观的点,网络将能够找到具有相似运动的点。这是因为观察到单个物体上的点的运动通常是均匀的。例如,向右奔跑的人的运动向量向右偏移,即使我们看不到该人的大部分由于遮挡而在匹配帧中结束的位置,也会保持这种偏移。我们可以使用这种统计偏差将运动信息从高(隐式)置信度的非遮挡像素传播到低置信度的遮挡像素。这里,置信度可以解释为是否存在明显的匹配,即在正确的位移处存在高相关值。
        有了这些想法,我们从transformers网络中获得了灵感,transformers网络以其建模长期依赖性的能力而闻名。与transformers中的自我注意机制不同,在transformers中,查询、键和值来自相同的特征向量,我们使用了一种广义的注意变体。我们的查询和关键特征是上下文特征图的投影,用于建模第1帧中的外观自相似性。值特征是运动特征的投影,运动特征本身就是4D相关体积的编码。根据查询和关键特征计算出的注意矩阵用于聚合作为运动隐藏表示的值特征。我们将其命名为全局运动聚合(GMA)模块。聚合后的运动特征与局部运动特征以及背景特征连接起来,由GRU解码。GMA的详细示意图如图4所示。

代码与链接

        可以直接运行demo的命令进行官方提供的demo的测试,经过读取数据,调整大小,计算光流:

python evaluate_single.py --model checkpoints/gma-sintel.pth --path imgs
def load_image(imfile): # 'imgs\\frame_0047.png' img = np.array(Image.open(imfile)).astype(np.uint8) # (436, 1024, 3)img = torch.from_numpy(img).permute(2, 0, 1).float() # torch.Size([3, 436, 1024])return img[None].to(DEVICE)# torch.Size([1, 3, 436, 1024])
padder = InputPadder(image1.shape)
image1, image2 = padder.pad(image1, image2)
flow_low, flow_up = model(image1, image2, iters=12, test_mode=True)
# torch.Size([1, 2, 55, 128])  torch.Size([1, 2, 440, 1024])

在这里插入图片描述

        The overall code framework is adapted from RAFT. We thank the authors for the contribution. We also thank Phil Wang for open-sourcing transformer implementations.
        整个代码框架改编自RAFT。我们感谢作者的贡献。我们还感谢Phil Wang开放源代码转换器的实现。

网络结构:

RAFTGMA((fnet): BasicEncoder((norm1): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))(relu1): ReLU(inplace=True)(layer1): Sequential((0): ResidualBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)(norm2): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False))(1): ResidualBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)(norm2): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)))(layer2): Sequential((0): ResidualBlock((conv1): Conv2d(64, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))(conv2): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): InstanceNorm2d(96, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)(norm2): InstanceNorm2d(96, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)(norm3): InstanceNorm2d(96, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)(downsample): Sequential((0): Conv2d(64, 96, kernel_size=(1, 1), stride=(2, 2))(1): InstanceNorm2d(96, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)))(1): ResidualBlock((conv1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv2): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): InstanceNorm2d(96, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)(norm2): InstanceNorm2d(96, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)))(layer3): Sequential((0): ResidualBlock((conv1): Conv2d(96, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)(norm2): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)(norm3): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)(downsample): Sequential((0): Conv2d(96, 128, kernel_size=(1, 1), stride=(2, 2))(1): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)))(1): ResidualBlock((conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)(norm2): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)))(conv2): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1)))(cnet): BasicEncoder((norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))(relu1): ReLU(inplace=True)(layer1): Sequential((0): ResidualBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(norm2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ResidualBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(norm2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer2): Sequential((0): ResidualBlock((conv1): Conv2d(64, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))(conv2): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(norm2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(norm3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(64, 96, kernel_size=(1, 1), stride=(2, 2))(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): ResidualBlock((conv1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv2): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(norm2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer3): Sequential((0): ResidualBlock((conv1): Conv2d(96, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(norm3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(96, 128, kernel_size=(1, 1), stride=(2, 2))(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): ResidualBlock((conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True)(norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(conv2): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1)))(update_block): GMAUpdateBlock((encoder): BasicMotionEncoder((convc1): Conv2d(324, 256, kernel_size=(1, 1), stride=(1, 1))(convc2): Conv2d(256, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(convf1): Conv2d(2, 128, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))(convf2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv): Conv2d(256, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(gru): SepConvGRU((convz1): Conv2d(512, 128, kernel_size=(1, 5), stride=(1, 1), padding=(0, 2))(convr1): Conv2d(512, 128, kernel_size=(1, 5), stride=(1, 1), padding=(0, 2))(convq1): Conv2d(512, 128, kernel_size=(1, 5), stride=(1, 1), padding=(0, 2))(convz2): Conv2d(512, 128, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0))(convr2): Conv2d(512, 128, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0))(convq2): Conv2d(512, 128, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0)))(flow_head): FlowHead((conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv2): Conv2d(256, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True))(mask): Sequential((0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(256, 576, kernel_size=(1, 1), stride=(1, 1)))(aggregator): Aggregate((to_v): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)))(att): Attention((to_qk): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(pos_emb): RelPosEmb((rel_height): Embedding(319, 128)(rel_width): Embedding(319, 128)))
)
GMAUpdateBlock((encoder): BasicMotionEncoder((convc1): Conv2d(324, 256, kernel_size=(1, 1), stride=(1, 1))(convc2): Conv2d(256, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(convf1): Conv2d(2, 128, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))(convf2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv): Conv2d(256, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(gru): SepConvGRU((convz1): Conv2d(512, 128, kernel_size=(1, 5), stride=(1, 1), padding=(0, 2))(convr1): Conv2d(512, 128, kernel_size=(1, 5), stride=(1, 1), padding=(0, 2))(convq1): Conv2d(512, 128, kernel_size=(1, 5), stride=(1, 1), padding=(0, 2))(convz2): Conv2d(512, 128, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0))(convr2): Conv2d(512, 128, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0))(convq2): Conv2d(512, 128, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0)))(flow_head): FlowHead((conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(conv2): Conv2d(256, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(relu): ReLU(inplace=True))(mask): Sequential((0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(256, 576, kernel_size=(1, 1), stride=(1, 1)))(aggregator): Aggregate((to_v): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False))
)
 [RAFT论文](https://arxiv.org/abs/2003.12039)[GMA论文](https://arxiv.org/pdf/2104.02409.pdf)[官方代码实现](https://github.com/zacjiang/GMA)[视频讲解](https://www.bilibili.com/video/BV1tM4y1T7kk?)

这篇关于光流 GMA : Learning to Estimate Hidden Motions with Global Motion Aggregation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/292201

相关文章

Deep Learning复习笔记0

Key Concept: Embedding: learned dense, continuous, low-dimensional representations of object 【将难以表示的对象(如图片,文本等)用连续的低维度的方式表示】 RNN: Recurrent Neural Network -> for processing sequential data (time se

GIM: Learning Generalizable Image Matcher From Internet Videos

【引用格式】:Shen X, Yin W, Müller M, et al. GIM: Learning Generalizable Image Matcher From Internet Videos[C]//The Twelfth International Conference on Learning Representations. 2023. 【网址】:https://arxiv.or

【Rust 日报】2021-11-21 The RustFest Global - Rust in Arts

RustFest Global 2021:Rust In Arts Edition 日程:(https://rustfest.global/schedule/ 地址:https://watch.rustfest.global/ pigeon-rs:电子邮件自动化工具 Pigeon 是一种命令行工具,用于以廉价且高效的方式自动化电子邮件工作流程。 比如,查询时事通讯的订阅者并向他们发送电子邮件:

5.How Fast Should You Be When Learning?(你应该用多快的速度学习? (一))

Normally when I talk about learing quickly, I’m using speed as a synonym for efficiency.Use more effective methods and you’ll learn more in less time.All else being equal, that means you’re learing fa

【Deep Learning】Meta-Learning:训练训练神经网络的神经网络

元学习:训练训练神经网络的神经网络 本文基于清华大学《深度学习》第12节《Beyond Supervised Learning》的内容撰写,既是课堂笔记,亦是作者的一些理解。 1 Meta-Learning 在经典监督学习中,给定训练数据 { ( x i , y i ) } i \{(x_i,y_i)\}_i {(xi​,yi​)}i​,我们需要训练一个神经网络 f f f使得 f (

【Deep Learning】Self-Supervised Learning:自监督学习

自监督学习 本文基于清华大学《深度学习》第12节《Beyond Supervised Learning》的内容撰写,既是课堂笔记,亦是作者的一些理解。 在深度学习领域,传统的监督学习(Supervised Learning)的形式是给你输入 x x x和标签 y y y,你需要训练一个基于参数 θ \theta θ的神经网络 f θ ( x ) f_\theta(x) fθ​(x)使其能

Representation Learning on Network 网络表示学习笔记

Embedding Nodes Encoder-decoder ViewEncoding Methods 1 Factorization based2 Random Walk based3 Deep Learning based 网络表示学习(Representation Learning on Network),一般说的就是向量化(Embedding)技术,简单来说,就是

AI播客下载:Machine Learning Street Talk(AI机器学习)

该频道由 Tim Scarfe 博士、Yannic Kilcher 博士和 Keith Duggar 博士管理。 他们做了出色的工作,对每个节目进行了彻底的研究,并与机器学习行业中一些受过最高教育、最全面的嘉宾进行了双向对话。 每一集都会教授一些新内容,并且提供未经过滤、毫不掩饰的技术对话。 他们列出的人工智能研究人员名单令人印象深刻,他们总是能提供有趣的对话。 之前的一些嘉宾包括 Je

【读论文】Learning perturbations to explain time series predictions

文章目录 Abstract1. Introduction2. Background Work3. Method4. Experiments4.1 Hidden Markov model experiment4.2 MIMIC-III experiment 5. ConclusionReferences 论文地址:Learning Perturbations to Explain

模型压缩:Networks Slimming-Learning Efficient Convolutional Networks through Network Slimming

Network Slimming-Learning Efficient Convolutional Networks through Network Slimming(Paper) 2017年ICCV的一篇paper,思路清晰,骨骼清奇~~ 创新点: 1. 利用batch normalization中的缩放因子γ 作为重要性因子,即γ越小,所对应的channel不太重要,就可以裁剪(prun