Introduction to Deep Learning with PyTorch

2024-09-06 02:36

本文主要是介绍Introduction to Deep Learning with PyTorch,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、Introduction to PyTorch, a Deep Learning Library

1.1、Importing PyTorch and related packages

import torch# supports:
## image data with torchvision
## audio data with torchaudio
## text data with torchtext

1.2、Tensors: the building blocks of networks in PyTorch

1.2.1、Load from list

import torchlst = [[1,2,3], [4,5,6]]
tensor = torch.tensor(lst)

1.2.2、Load from NumPy array

np_array = np.array(array)
np_tensor = torch.from_numpy(np_array)

1.3、Creating our first neural network

1.3.1、A basic, two-layer network with no hidden layers

import torch.nn as nn# Create input_tensor with three features
input_tensor = torch.tensor([0.3471, 0.4547, -0.2356])# Define our first linear layer
linear_layer = nn.Linear(in_features=3, out_features=2# Pass input through linear layer
output = linear_layer(input_tensor)# Show the output
print(output)# Each linear layer has a .weight and .bias property
linear_layer.weight
linear_layer.bias
  • Networks with only linear layers are called fully connected networks.

1.3.2、Stacking layers with nn.Sequential()

# Create network with three linear layers
model = nn.Sequential(nn.Linear(10,18),nn.Linear(18,20),nn.Linear(20, 5),
)

1.4、Discovering activation functions

  • Activation functions add non-linearity to the network.
  • A model can learn more complex relationships with non-linearity.
  • Two-class classification: Sigmoid function demo:

     
    import torch
    import torch.nn as nninput_tensor = torch.tensor([[6.0]])
    sigmoid = nn.Sigmoid()
    output = sigmoid(input_tensor)# tensor([[0.9975]])
  • Application for Sigmoid function:
    model = nn.Sequential(nn.Linear(6,4),nn.Linear(4,1),nn.Sigmoid()
    )
  • Multi-class classification: Softmax demo:

     
    import torch
    import torch.nn as nninput_tensor = torch.tensor([[4.3, 6.1, 2.3]])# dim=-1 indicates softmax is applied to the input tensor's last dimension
    # nn.Softmax() can be used as last step in nn.Sequential()
    probabilities = nn.Softmax(dim=-1)
    output_tensor = probabilities(input_tensor)print(output_tensor)# tensor([[0.1392, 0.8420, 0.0188]])

2、Training Our First Neural Network with PyTorch

2.1、Running a forward pass

2.1.1、Forward pass

  • Input data is passed forward or propagated through a network.
  • Coputations performed at each layer.
  • Outputs of each layer passed to each subsequent layer.
  • Output of final layer: "prediction".
  • Used for both training and prediction.
  • Some possible outputs:

2.1.2、Backward pass

2.1.3、Binary classification: forward pass

2.1.4、Multi-class classification: forward pass

2.1.5、Regression: forward pass

2.2、Using loss functions to assess model predictions

2.2.1、Why we need a loss function?

  • Give feedback to model during training.
  • Take in model prediction \hat{y} and ground truth {y} .
  • Output a float.

2.2.2、One-hot encoding concepts

import torch.nn.functional as FF.one_hot(torch.tensor(0), num_classes = 3)
# tensor([1,0,0]) --- first classF.one_hot(torch.tensor(1), num_classes = 3)
# tensor([0,1,0]) --- second classF.one_hot(torch.tensor(2), num_classes = 3)
# tensor([0,0,1]) --- third class

2.2.3、Cross entropy loss in PyTorch

from torch.nn import CrossEntropyLossscores = tensor([[-0.1211, 0.1059]])
one_hot_target = tensor([[1, 0]])criterion = CrossEntropyLoss()
criterion(scores.double(), one_hot_target.double())
# tensor(0.8131, dtype=torch.float64)

2.2.4、Bringing it all together

2.3、Using derivatives to update model parameters

2.3.1、Minimizing the loss

  • High loss: model prediction is wrong
  • Low loss: model prediction is correct

2.3.2、Connecting derivatives and model training

2.3.3、Backpropagation concepts

2.3.4、Gradient descent

2.4、Writing our first training loop

2.4.1、Training a neural network

2.4.2、Mean Squared Error (MSE) Loss

2.4.3、Before the training loop

2.4.4、The training loop

3、Neural Network Architecture and Hyperparameters

3.1、Discovering activation functions between layers

3.1.1、Limitations of the sigmoid and softmax function

3.1.2、Introducing ReLU

3.1.3、Introducing Leaky ReLU

3.2、A deeper dive into neural network architecture

3.2.1、Counting the number of parameters

3.3、Learning rate and momentum

3.4、Layer initialization and transfer learning

3.4.1、Layer initialization

3.4.2、Transfer learning and fine tuning

4、Evaluating and Improving Models

4.1、A deeper dive into loading data

4.1.1、Recalling TensorDataset

4.1.2、Recalling DataLoader

4.2、Evaluating model performance

4.2.1、Model evaluation metrics

4.2.2、Calculating training loss

4.2.3、Calculating validation loss

4.2.4、Calculating accuracy with torchmetrics

4.3、Fighting overfitting

4.4、Improving model performance

  • Overfit the training set
  • Reduce overfitting
  • Fine-tune the hyperparameters

这篇关于Introduction to Deep Learning with PyTorch的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140754

相关文章

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

【超级干货】2天速成PyTorch深度学习入门教程,缓解研究生焦虑

3、cnn基础 卷积神经网络 输入层 —输入图片矩阵 输入层一般是 RGB 图像或单通道的灰度图像,图片像素值在[0,255],可以用矩阵表示图片 卷积层 —特征提取 人通过特征进行图像识别,根据左图直的笔画判断X,右图曲的笔画判断圆 卷积操作 激活层 —加强特征 池化层 —压缩数据 全连接层 —进行分类 输出层 —输出分类概率 4、基于LeNet

pytorch torch.nn.functional.one_hot函数介绍

torch.nn.functional.one_hot 是 PyTorch 中用于生成独热编码(one-hot encoding)张量的函数。独热编码是一种常用的编码方式,特别适用于分类任务或对离散的类别标签进行处理。该函数将整数张量的每个元素转换为一个独热向量。 函数签名 torch.nn.functional.one_hot(tensor, num_classes=-1) 参数 t

pytorch计算网络参数量和Flops

from torchsummary import summarysummary(net, input_size=(3, 256, 256), batch_size=-1) 输出的参数是除以一百万(/1000000)M, from fvcore.nn import FlopCountAnalysisinputs = torch.randn(1, 3, 256, 256).cuda()fl

Deep Ocr

1.圈出内容,文本那里要有内容.然后你保存,并'导出数据集'. 2.找出deep_ocr_recognition_training_workflow.hdev 文件.修改“DatasetFilename := 'Test.hdict'” 310行 write_deep_ocr (DeepOcrHandle, BestModelDeepOCRFilename) 3.推理test.hdev

Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学)

🎯要点 🎯受激发射损耗显微镜算法模型:🖊恢复嘈杂二维和三维图像 | 🖊模型架构:恢复上下文信息和超分辨率图像 | 🖊使用嘈杂和高信噪比的图像训练模型 | 🖊准备半合成训练集 | 🖊优化沙邦尼尔损失和边缘损失 | 🖊使用峰值信噪比、归一化均方误差和多尺度结构相似性指数量化结果 | 🎯训练荧光显微镜模型和对抗网络图形转换模型 🍪语言内容分比 🍇Python图像归一化