风格迁移2-06:MUNIT(多模态无监督)-源码无死角解析(3)-模型框架(前向传播)

本文主要是介绍风格迁移2-06:MUNIT(多模态无监督)-源码无死角解析(3)-模型框架(前向传播),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以下链接是个人关于 MUNIT(多模态无监督)-图片风格转换,的所有见解,如有错误欢迎大家指出,我会第一时间纠正。有兴趣的朋友可以加微信 17575010159 相互讨论技术。若是帮助到了你什么,一定要记得点赞!因为这是对我最大的鼓励。 文末附带 \color{blue}{文末附带} 文末附带 公众号 − \color{blue}{公众号 -} 公众号 海量资源。 \color{blue}{ 海量资源}。 海量资源

风格迁移2-00:MUNIT(多模态无监督)-目录-史上最新无死角讲解

前言

根据上一篇博客,可以知道,模型的构建代码为 train.py 中的如下部分:

    # Setup model and data loader, 根据配置创建模型if opts.trainer == 'MUNIT':trainer = MUNIT_Trainer(config)elif opts.trainer == 'UNIT':trainer = UNIT_Trainer(config)else:sys.exit("Only support MUNIT|UNIT")trainer.cuda()

那么我们就进入 MUNIT_Trainer(config) 看看把,可以知道MUNIT_Trainer主要实现了如下函数:

class MUNIT_Trainer(nn.Module):def __init__(self, hyperparameters):# 网络前向传播def forward(self, x_a, x_b):# 生成模型进行优化def gen_update(self, x_a, x_b, hyperparameters):# 鉴别模型进行优化def dis_update(self, x_a, x_b, hyperparameters):

以上几个函数,就是我们重点分析的对象。

框架总览

对于 pytorch 框架构建的网络,我们一般是先查看他的 forward(网络前向传播) ,代码实现如下:

    # 网络前向传播def forward(self, x_a, x_b):# 先设定为推断模式self.eval()# 把随机噪声转化为pytorch变量s_a = Variable(self.s_a)s_b = Variable(self.s_b)# 输入图片a,b进行编码,分别得到论文中的content code 以及 style codec_a, s_a_fake = self.gen_a.encode(x_a)c_b, s_b_fake = self.gen_b.encode(x_b)# 对content code 加入噪声,然后进行解码(混合),得到合成的图片x_ba = self.gen_a.decode(c_b, s_a)x_ab = self.gen_b.decode(c_a, s_b)self.train()return x_ab, x_ba

从总体来看,过程是十分简单的,首先对输入的两张图片都进行编码,分别得到两张图片的 content code 以及 style code,再互换,然后加入符合正态分布的噪声生成新的图片x_ab, x_ba。

了解了总体框架之后,我们再来看看初始化函数。

初始化函数

该函数的注释如下(后面有带读):

    def __init__(self, hyperparameters):super(MUNIT_Trainer, self).__init__()lr = hyperparameters['lr']# Initiate the networks# 生成网络模型a, 即由数据集A到数据集B的映射self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen'])  # auto-encoder for domain a# 生成网络模型b, 即由数据集B到数据集A的映射self.gen_b = AdaINGen(hyperparameters['input_dim_b'], hyperparameters['gen'])  # auto-encoder for domain b# 鉴别模型a,鉴别生成的图像,是否和数据集A的分布一致self.dis_a = MsImageDis(hyperparameters['input_dim_a'], hyperparameters['dis'])  # discriminator for domain a# 鉴别模型b,鉴别生成的图像,是否和数据集B的分布一致self.dis_b = MsImageDis(hyperparameters['input_dim_b'], hyperparameters['dis'])  # discriminator for domain b# 使用正则化的方式self.instancenorm = nn.InstanceNorm2d(512, affine=False)# style 输出的特征码维度self.style_dim = hyperparameters['gen']['style_dim']# fix the noise used in sampling, 随机加入噪声,噪声符合正态分布display_size = int(hyperparameters['display_size'])self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda()self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda()# Setup the optimizers, 优化器的超参数beta1 = hyperparameters['beta1']beta2 = hyperparameters['beta2']# 鉴别模型a,b的相关参数dis_params = list(self.dis_a.parameters()) + list(self.dis_b.parameters())# 生成模型a,b的相关参数gen_params = list(self.gen_a.parameters()) + list(self.gen_b.parameters())# 构建鉴别模型以及生成生成模型的优化器self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad],lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad],lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])# 鉴别模型以及生成生成模型的学习率衰减策略self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters)self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters)# Network weight initialization,网络模型权重初始化self.apply(weights_init(hyperparameters['init']))self.dis_a.apply(weights_init('gaussian'))self.dis_b.apply(weights_init('gaussian'))# Load VGG model if needed,加载VGG模型,用来计算感知 lossif 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0:self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models')self.vgg.eval()for param in self.vgg.parameters():param.requires_grad = False

总的来说,初始化的过程中,主要构建了两个生成器gen_a,gen_b。以及两个鉴别器dis_a,dis_b。和对应的优化器。最后还创建了计算感知 loss 需要的VGG网络。

最主要的是,生成器gen_a,gen_b中包含了解码器和生成器,下篇博客我会对 loss 的计算进行讲解,需要大家继续观看。

在这里插入图片描述

这篇关于风格迁移2-06:MUNIT(多模态无监督)-源码无死角解析(3)-模型框架(前向传播)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/289780

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现