虹膜识别内圆检测 精定位 求最大比率

2023-10-27 22:30

本文主要是介绍虹膜识别内圆检测 精定位 求最大比率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文和下文介绍如何对一个虹膜图像进行分割提取出虹膜,在虹膜分割中,最重要的是检测两个圆,一个内圆,一个是外圆。下面是两个圆的示意图。


本文先讲解如何检测内圆,在我的方法中,内圆的检测可分为四步:

1. 用Canny边缘检测和Hough变换从经过高斯平滑处理后的图片中检测圆。在此步操作,我故意把Hough变换的阈值设得比较小,这样我们就可以检测出很多圆了。下图就是用cvHoughCircle检测出的圆。


可以看到,在此步中,我们检测到了圆,但是有很多圆,我们现在要想办法找到我们要的那个内圆。下面的步骤就是我找内圆的方法。

2. 把原图二值化,这个可以通过cvThreshold很容易实现,阈值设在五十左右就可以了。阈值化后的图像如下:


这个二值化后得到的图像是为了后面计算每个圆中包含的瞳孔点比率做准备的。

3. 计算第一步中得到的每个圆的一个比率,计算是根据第二步中二值图像进行。比率的定义如下

PupilInclusion Rate = Number of black points / Area of circle
即:用每一个circle中包含的黑点的个数除以圆的面积
4. 在计算出每一个圆的比率后,找到比率最大的那个,并把那个作为最后的内圆,这样就可以完美得检测出内圆了。

 

opencv代码如下:

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
using namespace cv;
using namespace std;int main()
{Mat srcImage=imread("C://1.bmp");Mat midImage,dstImage,edge;imshow("原始图",srcImage);threshold(srcImage, srcImage, 30, 200.0, CV_THRESH_BINARY);//二值化int cn=0;//cn是圆的个数int radius=0;float ratio = 0;float maxratio = 0;float result[3];cvtColor(srcImage,midImage,COLOR_BGR2GRAY);blur(midImage,edge,Size(3,3));Canny(edge,edge,3,9,3);GaussianBlur(midImage,midImage,Size(9,9),2,2);vector<Vec3f> circles;HoughCircles(midImage,circles,CV_HOUGH_GRADIENT,2,10,200,80,0,0);for(cn=0;cn<circles.size();cn++){Point center(cvRound(circles[cn][0]),cvRound(circles[cn][1]));radius=cvRound(circles[cn][2]);//	circle(srcImage,center,3,Scalar(0,255,0),-1,8,0);//	circle(srcImage,center,radius,Scalar(155,50,255),3,8,0);//int width = srcImage.cols;int height = srcImage.rows;	int value; //pixel valueint count = 0;for(int i=0;i<height;i++){for(int j=0;j<width;j++){if (sqrt(pow(float(center.x-j),2)+pow(float(center.y-i),2))< radius){//获得某点的像素值value = srcImage.at<Vec3b>(i,j)[2];  //cvGetReal2D(img,i,j);if(value == 0)count++;}}ratio = float(count)/(3.14*radius*radius);if (ratio >= maxratio){result[0] = circles[cn][0];result[1] = circles[cn][1];result[2] = radius;maxratio = ratio;}}printf("黑色点像素的个数:%d\n",count);printf("瞳孔重合比率:%f\n",ratio);Point center1(cvRound(result[0]),cvRound(result[1]));circle(srcImage,center1,3,Scalar(0,255,0),-1,8,0);circle(srcImage,center1,result[2],Scalar(155,50,255),3,8,0);}if(cn==0){printf("No Circle Detected!!Please Check!!\n");system("pause");}imshow("效果图",srcImage);waitKey(0);return 0;
}

一定要注意这段代码是在循环里面的:

 if (ratio >= maxratio){result[0] = circles[cn][0];result[1] = circles[cn][1];result[2] = radius;maxratio = ratio;}

而且result[0]=cricles[cn][0];
最后的运行结果如下所示:
在这里插入图片描述
这样就把所有可能的霍夫圆的重合的最大比率的圆画出来了,输出统计到黑色像素点的总个数。

这篇关于虹膜识别内圆检测 精定位 求最大比率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/288849

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

poj 2175 最小费用最大流TLE

题意: 一条街上有n个大楼,坐标为xi,yi,bi个人在里面工作。 然后防空洞的坐标为pj,qj,可以容纳cj个人。 从大楼i中的人到防空洞j去避难所需的时间为 abs(xi - pi) + (yi - qi) + 1。 现在设计了一个避难计划,指定从大楼i到防空洞j避难的人数 eij。 判断如果按照原计划进行,所有人避难所用的时间总和是不是最小的。 若是,输出“OPETIMAL",若

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回

poj 2594 二分图最大独立集

题意: 求一张图的最大独立集,这题不同的地方在于,间接相邻的点也可以有一条边,所以用floyd来把间接相邻的边也连起来。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <sta

poj 3422 有流量限制的最小费用流 反用求最大 + 拆点

题意: 给一个n*n(50 * 50) 的数字迷宫,从左上点开始走,走到右下点。 每次只能往右移一格,或者往下移一格。 每个格子,第一次到达时可以获得格子对应的数字作为奖励,再次到达则没有奖励。 问走k次这个迷宫,最大能获得多少奖励。 解析: 拆点,拿样例来说明: 3 2 1 2 3 0 2 1 1 4 2 3*3的数字迷宫,走两次最大能获得多少奖励。 将每个点拆成两个