Unity SRP自定义渲染管线学习2.1: DrawCalls 编写无光物体Shader

本文主要是介绍Unity SRP自定义渲染管线学习2.1: DrawCalls 编写无光物体Shader,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

要绘制出物体,CPU必须告诉GPU绘制什么,怎么绘制?通常Mesh控制了绘制什么,Shader则控制怎么绘制,会给GPU一系列的设置。除了Mesh外,Shader需要额外的信息,包括物体的空间信息矩阵,材质属性等。

Unity的通用渲染管线和高清渲染管线中,可以通过Shader Graph插件来编辑Shader,但是如果是我们自己定义的渲染管线,我们必须自己写Shader代码,自己写的话,我们能够完全控制并且理解好Shader所要做的工作。

软件环境

我使用的Unity版本:Unity2020.3.10f1

编写Shader

我们创建第一个无光只有纯色的Shader,创建后先清空所有的内容
在这里插入图片描述
要绘制一个Mesh,GPU必须将Mesh的面进行光栅化,转换成像素数据,通过将顶点坐标从3维空间转换到2维的视图空间,再填入像素数据。这两步就是通过我们自己定义的顶点函数(vertex kernel/program/shader),片元函数(fragment kernel/program/shader)。一个片元对应着显示一个像素或者是纹理像素,但可能不是最终显示的,因为它的上面还可能有其他物体会把它给覆盖掉。
我们先在Unlit Shader中写好基本结构


Shader "Custom RP/Unlit"
{Properties {}SubShader {Pass {HLSLPROGRAM  //CGPROGRAM 和 HLSLPROGRAM 都是支持的,但我们看现在的Unity官方的渲染管线都是这么写的了//pragma来源于希腊语,指需要做某些事或者一个操作,在很多的编程语言中都用于表示特殊的编译器指令,对,就是指令,或许中文的“指令”一词能比较好的代表其的含义#pragma vertex UnlitPassVertex#pragma fragment UnlitPassFragment#include "UnlitPass.hlsl"  //对应着.cginc,和上面的HLSLPROGRAM一个道理ENDHLSL}}
}

我们把一些方法放在UnlitPass.hlsl中,和之前的.cginc是一个道理
在这里插入图片描述
先简单实现我们需要的顶点、片元函数


#ifndef CUSTOM_UNLIT_PASS_INCLUDED  //避免被多个文件include,导致重复定义,导致编译错误,基本上头文件开头都得这样子写
#define CUSTOM_UNLIT_PASS_INCLUDED/* 输入的坐标为什么定义为float3,而不是float4
点坐标和方向向量都被定义为4维坐标,点坐标的w=1,方向向量的w=0,这是为了能够直接对坐标和方向进行矩阵变换。
所以我们定义坐标和方向向量时,如果不需要混合运算的话,我们可以先只定义3维向量,比如把输入数据定义为float3,在最后加上1或0即可,这样可以节约开销。
*/
float4 UnlitPassVertex(float3 positionOS : POSITION) : SV_POSITION  //语义SV_POSITION指返回值是位置坐标,语义需要指出返回的值的用途
{//positionOS是物体空间坐标,Object Spacereturn float4(positionOS, 1.0);// return 0.0;  
}
/*  关于Shader值类型使用float、half、fixed的纠结说明
大部分的移动设备的GPU支持两种精度类型:float和half,half类型性能更优,所以如果在写移动端的shader时可以尽可能的使用half。
根据经验,仅仅位置、纹理坐标需要使用float类型,其他的都可以使用half类型,结果相差无几
但如果不是移动设备,使用哪种精度类型就无所谓了,因为即使我们使用half,实际上GPU用的也是float
而对于fixed类型,只有在一些老的移动设备中才会支持,现在的设备基本都不再支持,所以即使写的是fixed,实际上也是用half
*/
float4 UnlitPassFragment() : SV_TARGET  //语义SV_TARGET指返回值是用于RenderTarget的
{return 0.0;  //返回一个值会直接被转换成(0.0, 0.0, 0.0, 0.0),因为是不透明物体,所以alpha通道为0也没关系
}
#endif

我们先尝试了一下在顶点函数中直接返回物体空间坐标,错误表现
在这里插入图片描述
仿照Unity官方管线的做法,添加一个ShaderLibrary目录,添加一个UnityInput文件,用来存放一些通用的方法,比如马上要写的转换空间坐标的方法
在这里插入图片描述


#ifndef CUSTOM_UNITY_INPUT_INCLUDED
#define CUSTOM_UNITY_INPUT_INCLUDED
float4x4 unity_ObjectToWorld;  //每一次绘制GPU设置这个值,然后在一次绘制中的顶点片元函数使用期间值不变
float4x4 unity_MatrixVP;  //View-Projection Matrix#endif

Common.hlsl
在这里插入图片描述

#ifndef CUSTOM_COMMON_INCLUDED
#define CUSTOM_COMMON_INCLUDED
#include "UnityInput.hlsl"
float3 TransformObjectToWorld(float3 positionOS)
{//Swizzle operation: In computer graphics, swizzling is the ability to compose vectors by arbitrarily rearranging and combining components of other vectors.[1] For example, if A = {1,2,3,4}, where the components are x, y, z, and w respectively, you could compute B = A.wwxy, whereupon B would equal {4,4,1,2}.return mul(unity_ObjectToWorld, float4(positionOS, 1.0)).xyz;// return 0.0;
}float4 TransformWorldToHClip(float3 positionWS)
{return mul(unity_MatrixVP, float4(positionWS, 1.0));
}#endif

然后我们就可以在顶点片元函数中使用这些方法了
UnlitPass.hlsl


float4 UnlitPassVertex(float3 positionOS : POSITION) : SV_POSITION  //语义SV_POSITION指返回值是位置坐标,语义需要指出返回的值的用途
{//positionOS是物体空间坐标,Object Spacefloat3 positionWS = TransformObjectToWorld(positionOS.xyz);return TransformWorldToHClip(positionWS);// return float4(positionWS, 1.0);// return 0.0;  
}

当我们在顶点函数最后输出的是裁剪空间坐标后大小就正确了
在这里插入图片描述

Swizzle operation

什么是Swizzle operation或者Swizzling,就是通过任意组合排列一个向量的元素得到另外一个向量的操作,比如A = {1, 2, 3, 4},我们让B = A.wxxx,那么 B = {4, 1, 1, 1},这个操作就叫Swizzle operation或者Swizzling

Wiki上原文:
In computer graphics, swizzling is the ability to compose vectors by arbitrarily rearranging and combining components of other vectors.[1] For example, if A = {1,2,3,4}, where the components are x, y, z, and w respectively, you could compute B = A.wwxy, whereupon B would equal {4,4,1,2}.

猫神原文:
在这里插入图片描述

使用Core RP Library

实际上我们还可以直接使用Core RP Library,其中有很多已经定义好的通用方法
在这里插入图片描述
UnlitPass.hlsl


#ifndef CUSTOM_UNLIT_PASS_INCLUDED  //避免被多个文件include,导致重复定义,导致编译错误,基本上头文件开头都得这样子写
#define CUSTOM_UNLIT_PASS_INCLUDED
#include "../ShaderLibrary/Common.hlsl" //不是一个目录的,需要使用相对路径

Common.hlsl


#ifndef CUSTOM_COMMON_INCLUDED
#define CUSTOM_COMMON_INCLUDED
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Common.hlsl"
#include "UnityInput.hlsl"
#define UNITY_MATRIX_M unity_ObjectToWorld  //所有的UNITY_MATRIX_M会被替换成unity_ObjectToWorld,Unity的Package中用的是UNITY_MATRIX_M
#define UNITY_MATRIX_I_M unity_WorldToObject
#define UNITY_MATRIX_V unity_MatrixV
#define UNITY_MATRIX_VP unity_MatrixVP
#define UNITY_MATRIX_P glstate_matrix_projection
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/SpaceTransforms.hlsl"  //直接将Package的文件包含进来
/* 这两个方法实际上在Core RP Library中已经有定义了,我们可以直接使用Package
float3 TransformObjectToWorld(float3 positionOS)
{//Swizzle operation: In computer graphics, swizzling is the ability to compose vectors by arbitrarily rearranging and combining components of other vectors.[1] For example, if A = {1,2,3,4}, where the components are x, y, z, and w respectively, you could compute B = A.wwxy, whereupon B would equal {4,4,1,2}.return mul(unity_ObjectToWorld, float4(positionOS, 1.0)).xyz;// return 0.0;
}
float4 TransformWorldToHClip(float3 positionWS)
{return mul(unity_MatrixVP, float4(positionWS, 1.0));
}
*/
#endif

UnityInput.hlsl


#ifndef CUSTOM_UNITY_INPUT_INCLUDED
#define CUSTOM_UNITY_INPUT_INCLUDED
float4x4 unity_ObjectToWorld;  //每一次绘制GPU设置这个值,然后在一次绘制中的顶点片元函数使用期间值不变
float4x4 unity_WorldToObject;
real4 unity_WorldTransformParams;
float4x4 unity_MatrixVP;  //View-Projection Matrix
float4x4 unity_MatrixV;
float4x4 glstate_matrix_projection;
#endif

添加颜色属性

我们添加颜色的属性变量
Unlit.shader


Properties {_BaseColor("Color", Color) = (1.0, 1.0, 1.0, 1.0)}

UnlitPass.hlsl


float4 _BaseColor;  //用于Shader中定义颜色属性,名称需相同float4 UnlitPassFragment() : SV_TARGET  //语义SV_TARGET指返回值是用于RenderTarget的
{return _BaseColor;// return float4(1.0, 1.0, 0.0, 1.0);// return 0.0;  //返回一个值会直接被转换成(0.0, 0.0, 0.0, 0.0),因为是不透明物体,所以alpha通道为0也没关系
}

这样我们就可以调整颜色了
在这里插入图片描述

参考

本文主要学习自: https://catlikecoding.com/unity/tutorials/custom-srp/draw-calls/
https://bitbucket.org/catlikecodingunitytutorials/custom-srp-02-draw-calls/src/master/
catlikecoding是大神的博客,里面有很多教程,膜拜大神,感恩大神。

这篇关于Unity SRP自定义渲染管线学习2.1: DrawCalls 编写无光物体Shader的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/281848

相关文章

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

如何自定义Nginx JSON日志格式配置

《如何自定义NginxJSON日志格式配置》Nginx作为最流行的Web服务器之一,其灵活的日志配置能力允许我们根据需求定制日志格式,本文将详细介绍如何配置Nginx以JSON格式记录访问日志,这种... 目录前言为什么选择jsON格式日志?配置步骤详解1. 安装Nginx服务2. 自定义JSON日志格式各

Android自定义Scrollbar的两种实现方式

《Android自定义Scrollbar的两种实现方式》本文介绍两种实现自定义滚动条的方法,分别通过ItemDecoration方案和独立View方案实现滚动条定制化,文章通过代码示例讲解的非常详细,... 目录方案一:ItemDecoration实现(推荐用于RecyclerView)实现原理完整代码实现

基于Spring实现自定义错误信息返回详解

《基于Spring实现自定义错误信息返回详解》这篇文章主要为大家详细介绍了如何基于Spring实现自定义错误信息返回效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录背景目标实现产出背景Spring 提供了 @RestConChina编程trollerAdvice 用来实现 HTT

SpringSecurity 认证、注销、权限控制功能(注销、记住密码、自定义登入页)

《SpringSecurity认证、注销、权限控制功能(注销、记住密码、自定义登入页)》SpringSecurity是一个强大的Java框架,用于保护应用程序的安全性,它提供了一套全面的安全解决方案... 目录简介认识Spring Security“认证”(Authentication)“授权” (Auth

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

SpringBoot自定义注解如何解决公共字段填充问题

《SpringBoot自定义注解如何解决公共字段填充问题》本文介绍了在系统开发中,如何使用AOP切面编程实现公共字段自动填充的功能,从而简化代码,通过自定义注解和切面类,可以统一处理创建时间和修改时间... 目录1.1 问题分析1.2 实现思路1.3 代码开发1.3.1 步骤一1.3.2 步骤二1.3.3

dubbo3 filter(过滤器)如何自定义过滤器

《dubbo3filter(过滤器)如何自定义过滤器》dubbo3filter(过滤器)类似于javaweb中的filter和springmvc中的intercaptor,用于在请求发送前或到达前进... 目录dubbo3 filter(过滤器)简介dubbo 过滤器运行时机自定义 filter第一种 @A

基于.NET编写工具类解决JSON乱码问题

《基于.NET编写工具类解决JSON乱码问题》在开发过程中,我们经常会遇到JSON数据处理的问题,尤其是在数据传输和解析过程中,很容易出现编码错误导致的乱码问题,下面我们就来编写一个.NET工具类来解... 目录问题背景核心原理工具类实现使用示例总结在开发过程中,我们经常会遇到jsON数据处理的问题,尤其是

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操