Python数据分析与展示之图像的手绘效果实例分析学习笔记手札及代码实战

本文主要是介绍Python数据分析与展示之图像的手绘效果实例分析学习笔记手札及代码实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像的手绘效果实例分析

  • 学习笔记手札及单元小结
  • 图像的数组表示
  • 图像的变换
  • "图像的手绘效果"实例分析

学习笔记手札及单元小结

01
02
03
04

图像的数组表示

以下代码请在Anaconda的IPython平台运行
PIL库的安装:
在命令行下的安装方法:pip install pillow

from PIL import Image   #Image是PIL库中代表一个图像的类(对象)
from PIL import Imageimport numpy as npim = array(Image.open("C:/01.jpg"))
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-3-8a130c29210a> in <module>
----> 1 im = array(Image.open("C:/01.jpg"))NameError: name 'array' is not definedim = np.array(Image.open("C:/01.jpg"))print(im.shape,im.dtype)
(2448, 1836, 3) uint8 #图像是一个三维数组,维度分别是高度·宽度和像素RGB值

01

图像的变换

读入图像后,获得像素RGB值,修改后保存为新的文件

from PIL import Imageimport numpy as npa = np.array(Image.open("D:/01.jpg"))print(a.shape,a.dtype)
(2448, 1836, 3) uint8b = [255,255,255] -aim = Image.fromarray(b.astype('uint8'))im.save("D:/02.jpg")

02

from PIL import Imageimport numpy as npa = array(Image.open("D:/01.jpg").convert('L'))
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-3-5e990d68fb86> in <module>
----> 1 a = array(Image.open("D:/01.jpg").convert('L'))NameError: name 'array' is not defineda = np.array(Image.open("D:/01.jpg").convert('L'))b = 255 - aim = Image.fromarray(b.astype('uint8'))im.save("D:/03.jpg")
---------------------------------------------------------------------------
FileNotFoundError                         Traceback (most recent call last)
<ipython-input-7-79fa9e4b0e79> in <module>
----> 1 im.save("D:/03.jpg")~\anaconda3\lib\site-packages\PIL\Image.py in save(self, fp, format, **params)2097                 fp = builtins.open(filename, "r+b")2098             else:
-> 2099                 fp = builtins.open(filename, "w+b")2100 2101         try:FileNotFoundError: [Errno 2] No such file or directory: 'D:/03.jpg'   #注意代码书写格式规范,这个是错误案例im.save("D:/03.jpg")

03

from PIL import Imageimport numpy as npa = np.array(Image.open("D:/01.jpg").convert('L'))c = (100/255)*a + 150 #区间变换im = Image.fromarray(c.astype('uint8'))im.save("D:/04.jpg")

04

from PIL import Imageimport numpy as npa = np.array(Image.open("D:/01.jpg").convert('L'))d = 255 * (a/255)**2  #像素平方im = Image.fromarray(d.astype('uint8'))im.save("D:/05.jpg")

05

"图像的手绘效果"实例分析

from PIL import Imageimport numpy as npa = np.asarray(Image.open('D:/01.jpg').convert('L')).astype('float')depth = 10.   #(0-100)grad = np.gradient(a) #取图像灰度的梯度值grad_x,grad_y = grad  #分别取横纵图像梯度值grad_x = grad_y*depth/100.grad_y = grad_y*depth/100.A = np.sqrt(grad_x**2 + grad_y**2 + 1.)uni_x = grad_x/Auni_y = grad_y/Auni_z = 1./Avec_el = np.pi/2.2 #光源的俯视角度,弧度值vec_az = np.pi/4.  #光源的方位角度,弧度值dx = np.cos(vec_el)*np.cos(vec_az) #光源对x轴的影响dy = np.cos(vec_el)*np.sin(vec_az) #光源对y轴的影响dz = np.sin(vec_el) #光源对z轴的影响b = 255*(dx*uni_x + dy*uni_y + dz*uni_z) #光源归一化b = b.clip(0,255)im = Image.fromarray(b.astype('uint8')) #重构图像im.save('D:/HD.jpg')

在这里插入图片描述

这篇关于Python数据分析与展示之图像的手绘效果实例分析学习笔记手札及代码实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/263944

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal