【优化求解】基于狮群算法LSO求解最优目标matlab源码

2023-10-21 09:59

本文主要是介绍【优化求解】基于狮群算法LSO求解最优目标matlab源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 简介

狮群优化算法(Loin Swarm Optimization, LSO),是于2018年提出的一种新型智能优化算法。基于狮群中狮王、母狮及幼狮的自然分工,模拟狮王守护、母狮捕猎、幼狮跟随3种群智能行为,提出群体智能算法——狮群算法.算法中不同种类的狮子位置更新方式不同.遵循自然界生物"适者生存"的竞争法则,狮王守护领土,优先享用食物,母狮合作捕猎,幼狮分为学习捕猎、饥饿进食和成年被驱逐.狮子位置更新方式的多样化保证算法快速收敛,不易陷入局部最优.最后,将算法应用于6个标准测试函数优化问题,并对比粒子群算法、骨干粒子群算法,测试结果表明,文中算法收敛速度较快,精度较高,能较好地获得全局最优解.

2 部分代码

%_________________________________________________________________________%
% 狮群优化算法             %
%_________________________________________________________________________%% 使用方法
%__________________________________________
% fobj = @YourCostFunction       设定适应度函数
% dim = number of your variables   设定维度
% Max_iteration = maximum number of generations 设定最大迭代次数
% SearchAgents_no = number of search agents   种群数量
% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n 变量下边界
% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n   变量上边界
% If all the variables have equal lower bound you can just
% define lb and ub as two single number numbers% To run SSA: [Best_pos,Best_score,curve]=LSO(pop,Max_iter,lb,ub,dim,fobj)
%__________________________________________clear all 
clc
SearchAgents_no=30; % 种群数量Function_name='F2'; % F1 to F23 设定适应度函数Max_iteration=50; % 设定最大迭代次数% 获取适应度函数边界信息等
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);  %设定边界以及优化函数[Best_score,Best_pos,LSO_curve]=LSO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); %开始优化figure('Position',[269   240   660   290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])%Draw objective space
subplot(1,2,2);
plot(LSO_curve,'Color','r','linewidth',1.5)
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');axis tight
grid on
box on
legend('LSO')display(['The best solution obtained by LSO is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by LSO is : ', num2str(Best_score)]);img =gcf;  %获取当前画图的句柄
print(img, '-dpng', '-r600', './运行结果2.png')         %即可得到对应格式和期望dpi的图像    

3 仿真结果

4 参考文献

[1]杨艳, 刘生建, and 周永权. "贪心二进制狮群优化算法求解多维背包问题." 计算机应用 5(2020):1291-1294.

 

这篇关于【优化求解】基于狮群算法LSO求解最优目标matlab源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253621

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ