爱上算法,迷人的两度搜索,深度优先(DFS)和广度优先(BFS)

2023-10-19 20:10

本文主要是介绍爱上算法,迷人的两度搜索,深度优先(DFS)和广度优先(BFS),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迷人的两度搜索

1、BFS和DFS

深度优先搜索算法(DFS)和广度优先搜索算法(BFS)是一种用于遍历或搜索树或图的算法,在搜索遍历的过程中保证每个节点(顶点)访问一次且仅访问一次,按照节点(顶点)访问顺序的不同分为深度优先和广度优先。

1.1、深度优先搜索算法

深度优先搜索算法(Depth-First-Search,DFS)沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。属于盲目搜索。
file

注意:

1:实际上,回溯算法思想就是借助于深度优先搜索来实现的。

DFS负责搜索所有的路径,回溯辅以选择和撤销选择这种思想寻找可能的解,当然代码写起来基于递归(所以代码写起来就是用递归实现的)。

2:DFS跟回溯有什么关系呢?

回溯是一种通用的算法,把问题分步解决,在每一步都试验所有的可能,当发现已经找到一种方式或者目前这种方式不可能是结果的时候,退回上一步继续尝试其他可能(有一个选择和撤销选择的过程,可理解为标记访问和删除访问标记)。很多时候每一步的处理都是一致的,这时候用递归来实现就很自然。

当回溯(递归)用于树(图)的时候,就是深度优先搜索。当然了,几乎所有可以用回溯解决的问题都可以表示为树。(像之前的排列,组合等问题,虽不是直接在树上操作,但是他们操作的中间状态其实是一棵树)那么这俩在这里就几乎同义了。如果一个问题解决的时候显式地使用了树或图,那么我们就叫它dfs。很多时候没有用树我们也管它叫dfs严格地说是不对的,但是dfs比回溯打字的时候好输入。

DFS代码参考模板:

//Java
private void dfs(TreeNode root,int level,List<List<Integer>> results){//terminal 已下探到最底部节点if(results.size()==level){ // or root == null or node alread visitedresults.add(new ArrayList<>()); return}// process current level node here.results.get(level).add(root.val); // 记录当前节点已被访问//drill down   if node not visitedif(root.left!=null){dfs(root.left,level+1,results);}if(root.right!=null){dfs(root.right,level+1,results);}
}

是不是觉得跟二叉树的前中后序遍历很像,其实二叉树的前中后序遍历就是一种DFS,只不过记录节点的时机不一样而已。

针对多叉树的DFS,代码参考模板如下:

//Java
public void dfs(Node node,List<Integer> res) {//terminal if (node == null) {return;}//process current level logicres.add(node.val);//drill down List<Node> children = node.children;for (Node n:children) {// if node not visited  then dfs nodeif (not visited) { // 在基于图的dfs中一般需要判断顶点是否已访问过dfs(n,res);}}
}

当然我们也可以自己使用栈来模拟递归的过程,将递归代码改写成非递归代码!

针对图的深度优先搜索算法,思路是一致的:

file

假设:从S开始进行查找,每次查找,先一头扎到底,然后再回退,回退过程中有别的路再一头扎到底。比如:S->A->D->G->E->B,到底了,然后回退到G,再一头扎到底,S->A->D->G->F->C

1.2、广度优先搜索算法

广度优先搜索算法(Breadth-First-Search,BFS)直观地讲,它其实就是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的,然后是次近的,依次往外搜索。

简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止,一般用队列数据结构来辅助实现BFS算法。

file

就像在湖面上滴一滴水,形成的水波纹!向四周散开

dfs和bfs搜索方式的比较:

file

BFS代码的参考模板:需要借助一个队列Queue(或Deque)

//Java
public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) {val = x;}
}public List<List<Integer>> levelOrder(TreeNode root) {List<List<Integer>> allResults = new ArrayList<>();if (root == null) {return allResults;}Queue<TreeNode> nodes = new LinkedList<>();//将根节点入队列nodes.add(root);while (!nodes.isEmpty()) {//每次循环开始时:队列中的元素的个数其实就是当前这一层节点的个数int size = nodes.size();List<Integer> results = new ArrayList<>();for (int i = 0; i < size; i++) {//从队列中取出每一个节点(取出这一层的每个节点)TreeNode node = nodes.poll();results.add(node.val);//将该节点的左右子节点入队列if (node.left != null) {nodes.add(node.left);}if (node.right != null) {nodes.add(node.right);}}allResults.add(results);}return allResults;
}

就相当于刚开始把公司老总放入队列,这是第一层,然后把老总的直接下级比如:vp,总监等,取出来,然后放入队列,到了vp,总监这一层时,再把他们的直接下属放入队列。

在图中的广度优先搜索过程如下:

file

参考该网址上的演示过程:https://visualgo.net/zh/dfsbfs

应用特点:

1:BFS适合在树或图中求解最近,最短等相关问题

2:DFS适合在树或图中求解最远,最深等相关问题

3:实际应用中基于图的应用居多

2、面试实战

102. 二叉树的层序遍历

滴滴,美团点评,腾讯最近面试题,102. 二叉树的层序遍历

典型的BFS,借助队列FIFO特性,

class Solution {public List<List<Integer>> levelOrder(TreeNode root) {//特殊判断if (root == null) {return new ArrayList();}Queue<TreeNode> queue = new LinkedList();queue.offer(root);List<List<Integer>> res = new ArrayList();while (!queue.isEmpty()) {int size = queue.size();List<Integer> list = new ArrayList();for (int i=0;i<size;i++) {TreeNode poll = queue.poll();list.add(poll.val);//将左右子树节点加入队列if (poll.left != null) {queue.offer(poll.left);}if (poll.right != null) {queue.offer(poll.right);}}res.add(list);}return res;}
}

时间复杂度O(n),空间复杂度O(n)

进阶:能否基于DFS完成

思路:按照深度优先遍历,遍历过程中将当前节点的值添加到它所对应的深度的集合中。因此需要一个在dfs过程中代表深度的变量

class Solution {public List<List<Integer>> levelOrder(TreeNode root) {List<List<Integer>> res = new ArrayList();dfs(root,0,res);return res;}public void dfs(TreeNode root,int level,List<List<Integer>> res) {//terminalif (root==null) {return;}//将当前层的集合初始化好int size = res.size();if ( level > size-1) {res.add(new ArrayList());}//将当前节点加到当前层对应的集合中List<Integer> list = res.get(level);list.add(root.val);//drill downdfs(root.left,level+1,res);dfs(root.right,level+1,res);}
}

104. 二叉树的最大深度

嘀嘀打车,百度最近面试题,104. 二叉树的最大深度

如果我们知道了左子树和右子树的最大深度 l 和 r,那么该二叉树的最大深度即为

max(l,r)+1

而左子树和右子树的最大深度又可以以同样的方式进行计算。因此使用递归

其实这也是DFS的体现,直接下探到最深处得到最大深度,然后左右两边比较即可。

class Solution {public int maxDepth(TreeNode root) {return dfs(root);}//求一棵子树的最大深度public int dfs(TreeNode node) {//终止条件if (node == null) {return 0;}//左子树最大深度int leftDepth = dfs(node.left);//右子树最大深度int rightDepth = dfs(node.right);//当前节点的最大深度为左子树最大深度和右子树最大深度中的最大值+1return Math.max(leftDepth,rightDepth) +1;}
}

时间复杂度:O(n),其中 n 为二叉树节点的个数。每个节点在递归中只被遍历一次。

空间复杂度:O(height),其中height 表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。

进阶:能否用BFS完成

利用一个计数器,每遍历完一层就计一个数,直到所有层都遍历结束

class Solution {public int maxDepth(TreeNode root) {//特殊判断if (root==null) {return 0;}Queue<TreeNode> queue = new LinkedList();queue.add(root);int deep = 0;while (!queue.isEmpty()) {int size  = queue.size();for (int i=0;i<size;i++) {TreeNode p = queue.poll();if (p.left!=null) {queue.offer(p.left);}if (p.right!=null) {queue.offer(p.right);}}//每一层节点遍历完成后计数器+1deep++;}return deep;}
}

小结:

在实际应用中,DFS要比BFS应用的广泛!

515. 在每个树行中找最大值

facebook,百度,字节面试题,515. 在每个树行中找最大值

典型的BFS

class Solution {public List<Integer> largestValues(TreeNode root) {List<Integer> res = new ArrayList();if (root==null) {return res;}Queue<TreeNode> queue = new LinkedList();queue.offer(root);while (!queue.isEmpty()) {int size = queue.size();int max = Integer.MIN_VALUE;for (int i=0;i<size;i++) {TreeNode p = queue.poll();if (p.left !=null) {queue.offer(p.left);}if (p.right!=null) {queue.offer(p.right);}//比较判断每一层的最大值max = Math.max(max,p.val);}//保存每一层的最大值res.add(max);}return res;}
}

200. 岛屿数量

亚马逊,华为,字节最近面试题,很高频,200. 岛屿数量

典型的图的搜索,立马想到DFS和BFS

class Solution {//定义顶点向:上下左右,各走一步的方向信息int[][] directions = {{0,1},{0,-1},{-1,0},{1,0}};//定义网格的行数int rows;//定义网格的列数int clos;public int numIslands(char[][] grid) {//定义岛屿总数int count = 0;//获取网格有多少行rows = grid.length;if (rows==0) {return count;}//获取网格有多少列clos = grid[0].length;//定义网格各顶点是否被访问过boolean[][] visited = new boolean[rows][clos];//从图中去找能构成岛屿的顶点for (int i=0;i<rows;i++) {for (int j=0;j<clos;j++) {//如果是陆地,并且没有被访问过则深度优先搜索(i,j)顶点相连的陆地。if (grid[i][j] == '1' && !visited[i][j]) {dfs(i,j,visited,grid);//找到一块count+1count++;}}}return count;}//搜索与(x,y)相连的陆地顶点,并标记这些顶点。public void dfs(int x,int y,boolean[][] visited,char[][] grid) {//走过的顶点要标记visited[x][y] = true;//从该顶点,向上下左右四个方向去走for (int i=0;i< 4;i++) {int newX = x + directions[i][0]; // directions[i]分别代表上下左右四个方向 directions[i][0]是X轴坐标要走的距离int newY = y + directions[i][1];//如果新顶点在网格内,且是陆地,且没有访问过,则继续搜索下去if (inGrid(newX,newY) && grid[newX][newY]=='1' && !visited[newX][newY]) {dfs(newX,newY,visited,grid);}}}//检查顶点(x,y)是否在网格内public boolean inGrid(int x,int y) {return x>=0 && x< rows && y>=0 && y<clos;}
}

其他题目

127. 单词接龙

529. 扫雷游戏

36. 有效的数独

本文由传智教育博学谷教研团队发布。

如果本文对您有帮助,欢迎关注点赞;如果您有任何建议也可留言评论私信,您的支持是我坚持创作的动力。

转载请注明出处!

这篇关于爱上算法,迷人的两度搜索,深度优先(DFS)和广度优先(BFS)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/242111

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR